1.河南理工大学 机械动力与工程学院,河南 焦作454000
2.南乌拉尔国立大学 机械与工程学院,俄罗斯 车里雅宾斯克 454080
扫 描 看 全 文
郐吉才,段云乾,ARDASHEV D V.在线电解修锐砂轮氧化膜界面反应及复合磨粒形成机理[J].光学精密工程,2023,31(20):2975-2985.
KUAI Jicai,DUAN Yunqian,ARDASHEV D V.Interfacial reactions and forming mechanism of composite abrasive grains in oxide film on ELID wheel[J].Optics and Precision Engineering,2023,31(20):2975-2985.
郐吉才,段云乾,ARDASHEV D V.在线电解修锐砂轮氧化膜界面反应及复合磨粒形成机理[J].光学精密工程,2023,31(20):2975-2985. DOI: 10.37188/OPE.20233120.2975.
KUAI Jicai,DUAN Yunqian,ARDASHEV D V.Interfacial reactions and forming mechanism of composite abrasive grains in oxide film on ELID wheel[J].Optics and Precision Engineering,2023,31(20):2975-2985. DOI: 10.37188/OPE.20233120.2975.
Electrolytic In-process Dressing (ELID)砂轮氧化膜具有辅助抛光性能,对改善磨削表面质量具有极其重要意义。分析了ELID砂轮表面氧化膜界面反应及复合磨粒的形成机理,利用X-射线衍射(μ-XRD)微区分析及电子能谱仪(XPS)对复合磨粒的组成成分、复合区域进行了测试,用扫描电镜(SEM)和透射电镜(TEM)对其形状、粒度、微观结构进行了研究。研究表明,氧化膜中复合磨粒是以磨粒为中心,从中心到边缘的成分依次为α-Fe,2,O,3,,γ-Fe,2,O,3,,FeO(OH),Fe(OH),3,等氧化物的复合结构。复合磨粒表面形成的氧化膜,呈层层堆积的圆葱状结构,磨削脱水后呈龟背状裂纹。复合磨粒形状为近似长圆形,粒度可达11.5 μm到50 μm。若干个复合磨粒在氧化膜内连续成网状结构,该网状结构对氧化膜辅助抛光有利,复合磨粒有效去除宽度为磨粒粒度及α-Fe,2,O,3,层宽度。
An oxide film with assistive polishing properties is of great importance for improving the quality of grinding in an ELID grinding wheel. The interface reaction of oxide film on the surface of an ELID grinding wheel and the formation mechanism of the composite abrasive particles were analyzed. The composition regions of the composite abrasive particles were examined using X-ray diffraction micro-zone analysis (μ-XRD) and electron energy spectroscopy (XPS). The shapes, particle sizes, and microstructures were studied using scanning electron microscopy and transmission electron microscopy. The oxide film is centered on the composite abrasive particles, with α-Fe,2,O,3,, γ-Fe,2,O,3,, FeO(OH), Fe(OH),3,, and other oxides extending from the center to the edges. The oxide film that formed on the surface of the composite abrasive grains has a layered onion-like structure and, upon grinding and dehydration, a tortoise-black-like crack. The composite abrasive grains have an elongated-circular shape, with particle sizes ranging from 11.5 to 50 μm. Several composite abrasive grains continuously formed a mesh structure in the oxide film. The mesh structure favors auxiliary polishing of the oxide film, and the effective removal width of the composite abrasive grains is the size of an abrasive grain plus the width of the α-iron oxide layer.
ELID磨削氧化膜界面反应复合磨粒α-Fe2O3
electrolytic in-process dressing grindingoxide filminterfacial reactionscomposite abrasive grainα-Fe2O3
LIU Z D, REN C Z, ZHAO K, et al. Modeling of oxide-film thickness in electrolytic in-process dressing grinding with workpiece swing[J].The International Journal of Advanced Manufacturing Technology, 2022, 122(3/4): 1695-1718. doi: 10.1007/s00170-022-10039-zhttp://dx.doi.org/10.1007/s00170-022-10039-z
关佳亮, 李鑫, 穆德明, 等. 碳化钛材料ELID磨削加工机理及工艺实验研究[J]. 工具技术, 2023, 57(1): 49-53.
GUAN J L, LI X, MU D M, et al. Experimental research on ELID grinding mechanism and technology of titanium carbide material[J]. Tool Engineering, 2023, 57(1)49-53. (in Chinese)
万林林, 罗晔, 邓朝晖, 等. ELID磨削预修锐与氧化膜成膜的影响因素[J]. 机械科学与技术, 2021, 40(3): 410-416.
WAN L L, LUO Y, DENG Z H, et al. Influencing factors of pre-dressing and oxide film formation in ELID grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 410-416.(in Chinese)
KUAI J C, WANG J W, JIANG C R, et al. Mechanical properties of the oxide film on ELID electrolytic copper-based grinding wheel by nanoindentation[J]. Ferroelectrics, 2017, 521(1): 26-31. doi: 10.1080/00150193.2017.1390978http://dx.doi.org/10.1080/00150193.2017.1390978
EZURA A, INAZAWA K, OMORI K, et al. ELID mirror surface grinding for concave molds by conductive elastic wheel containing carbon black[J]. International Journal of Automation Technology, 2022, 16(1): 21-31. doi: 10.20965/ijat.2022.p0021http://dx.doi.org/10.20965/ijat.2022.p0021
DAI Y, OHMORI H, LIN WEI MIN, et al. A fundamental study on optimal oxide layer of fine diamond wheels during ELID grinding process[J]. Key Engineering Materials, 2006, 304/305: 176-180. doi: 10.4028/www.scientific.net/kem.304-305.176http://dx.doi.org/10.4028/www.scientific.net/kem.304-305.176
向道辉, 雷小飞, 彭培成, 等. 超声振动辅助ELID磨削淬硬12Cr2Ni4A合金钢表面特性的研究[J]. 表面技术, 2021, 50(9): 333-341.
XIANG D H, LEI X F, PENG P C, et al. Study on surface characteristics of 12Cr2Ni4A alloy steel by ultrasonic vibration assisted ELID grinding[J]. Surface Technology, 2021, 50(9): 333-341.(in Chinese)
CHEN F, LI G X, ZHAO B, et al. Thermomechanical coupling effect on characteristics of oxide film during ultrasonic vibration-assisted ELID grinding ZTA ceramics[J]. Chinese Journal of Aeronautics, 2021, 34(6):125-40. doi: 10.1016/j.cja.2020.05.039http://dx.doi.org/10.1016/j.cja.2020.05.039
ALQAHTANI B, ZHANG M M, MARINESCU I, et al. Microscopic characterization and modeling of oxide layer for electrolytic in-process dressing (ELID) grinding with focus on voltage, electrode-wheel gap, and coolant flow[J].The International Journal of Advanced Manufacturing Technology, 2019, 105(12): 4853-4862. doi: 10.1007/s00170-019-03435-5http://dx.doi.org/10.1007/s00170-019-03435-5
伍俏平, 欧阳志勇, 阳慧, 等. 碳纳米管对大粒度多层钎焊金刚石砂轮电解修整磨削性能的影响研究[J]. 机械工程学报, 2020, 56(7): 231-239. doi: 10.3901/jme.2020.07.231http://dx.doi.org/10.3901/jme.2020.07.231
WU Q P, OUYANG Z Y, YANG H, et al. Influence of carbon nanotubes on electrolytic dressing grinding performance of a multi-layer brazed coarse-grained diamond wheel[J]. Journal of Mechanical Engineering, 2020, 56(7): 231-239.(in Chinese). doi: 10.3901/jme.2020.07.231http://dx.doi.org/10.3901/jme.2020.07.231
KUAI J C, ZHANG H L, ARDASHEV D V, et al. Discovery and temperature dependence of α-Fe2O3 in oxide film on iron bonded wheel and effect mechanism of temperature[J]. Integrated Ferroelectrics, 2021, 217(1): 116-128. doi: 10.1080/10584587.2021.1911303http://dx.doi.org/10.1080/10584587.2021.1911303
KUAI J C, ZHANG H L. Measurements on grinding wheels for investigating α-Fe2O3 in precision electrolytic in-process dressing grinding[J]. Advances in Mechanical Engineering, 2018, 10(3): 168781401876557. doi: 10.1177/1687814018765578http://dx.doi.org/10.1177/1687814018765578
白倩, 马浩, 殷景飞. 基于偏振激光共聚焦的研磨石英玻璃亚表面损伤检测[J]. 光学 精密工程, 2021, 29(8): 1795-1803. doi: 10.37188/OPE.20212908.1795http://dx.doi.org/10.37188/OPE.20212908.1795
BAI Q, MA H, YIN J F. Polarized laser confocal technique for subsurface damage of lapped quartz glass[J]. Opt. Precision Eng., 2021, 29(8): 1795-1803.(in Chinese). doi: 10.37188/OPE.20212908.1795http://dx.doi.org/10.37188/OPE.20212908.1795
叶震, 姚鹏, 于世孟, 等. 柱面微透镜阵列的精密磨削[J]. 光学 精密工程, 2021, 29(7): 1567-1579. doi: 10.37188/OPE.2020.0612http://dx.doi.org/10.37188/OPE.2020.0612
YE Z, YAO P, YU S M, et al. Precision grinding of cylindrical microlens array[J]. Opt. Precision Eng., 2021, 29(7): 1567-1579.(in Chinese). doi: 10.37188/OPE.2020.0612http://dx.doi.org/10.37188/OPE.2020.0612
高尚, 李天润, 郎鸿业, 等. 工件旋转法磨削硅片的亚表面损伤深度预测[J]. 光学 精密工程, 2022, 30(17): 2077-2087. doi: 10.37188/OPE.20223017.2077http://dx.doi.org/10.37188/OPE.20223017.2077
GAO S, LI T R, LANG H Y, et al. Prediction for subsurface damage depth of silicon wafers in workpiece rotational grinding[J]. Opt. Precision Eng., 2022, 30(17): 2077-2087.(in Chinese). doi: 10.37188/OPE.20223017.2077http://dx.doi.org/10.37188/OPE.20223017.2077
景志红, 吴世华. 室温研磨固相反应法制备γ-Fe2O3纳米粉体及其气敏性能研究[J]. 无机化学学报, 2006, 22(3): 483-487. doi: 10.3321/j.issn:1001-4861.2006.03.018http://dx.doi.org/10.3321/j.issn:1001-4861.2006.03.018
JING Z H, WU S H. Preparation and gas sensing properties of γ-Fe2O3 nanopowders by solid-state grinding method at room temperature[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(3): 483-487.(in Chinese). doi: 10.3321/j.issn:1001-4861.2006.03.018http://dx.doi.org/10.3321/j.issn:1001-4861.2006.03.018
张剑光, 张明福, 韩杰才, 等. 新型燃烧合成方法制备α-Fe2O3纳米晶[J]. 材料工程, 2001, 29(7): 40-42. doi: 10.3969/j.issn.1001-4381.2001.07.011http://dx.doi.org/10.3969/j.issn.1001-4381.2001.07.011
ZHANG J G, ZHANG M F, HAN J C, et al. α-Fe2O3 nanocrystallites prepared by a combustion method[J]. Journal of Materials Engineering, 2001, 29(7): 40-42.(in Chinese). doi: 10.3969/j.issn.1001-4381.2001.07.011http://dx.doi.org/10.3969/j.issn.1001-4381.2001.07.011
S.马尔金著, 蔡光起,巩亚东,等译. 磨削技术理论与应用[M]. 沈阳: 东北大学出版社, 2002: 114-119.
MALKIN S, CAI G Q, GONG Y D, et al. Grinding Technology Theory and Applications of Machining with Abrasives[M]. Shenyang: Northeast University Press, 2002: 114-119.(in Chinese)
姜其立, 刘俊, 帅麒麟, 等. 一种微束X射线衍射仪及其应用研究[J]. 原子能科学技术, 2020, 54(5)876-881. doi: 10.7538/yzk.2019.youxian.0581http://dx.doi.org/10.7538/yzk.2019.youxian.0581
JIANG Q L, LIU J, SHUAI Q L, et al. Study of micro X-ray diffractometer and its application[J]. Atomic Energy Science and Technology, 2020, 54(5)876-881(in Chinese). doi: 10.7538/yzk.2019.youxian.0581http://dx.doi.org/10.7538/yzk.2019.youxian.0581
ZBORIL R, MASHLAN M, PETRIDIS D. Iron(III) oxides from thermal ProcessesSynthesis, structural and magnetic properties, mössbauer spectroscopy characterization, and applications[J]. Chemistry of Materials, 2002, 14(3): 969-982. doi: 10.1021/cm0111074http://dx.doi.org/10.1021/cm0111074
SORESCU M, BRAND R A, MIHAILA-TARABASANU D, et al. The crucial role of particle morphology in the magnetic properties of haematite[J]. Journal of Applied Physics, 1999, 85(8): 5546-5548. doi: 10.1063/1.369890http://dx.doi.org/10.1063/1.369890
王党利, 马保吉, 宁生科. ELID磨削预修锐阶段砂轮表面氧化膜厚度测量及生长特性[J]. 中国机械工程, 2012, 23(18): 2173-2175, 2207. doi: 10.3969/j.issn.1004-132X.2012.18.007http://dx.doi.org/10.3969/j.issn.1004-132X.2012.18.007
WANG D L, MA B J, NING S K. Thickness measurement and growth behaviors of oxide layers on grinding wheel surface in pre-dressing process of ELID[J]. China Mechanical Engineering, 2012, 23(18): 2173-2175, 2207.(in Chinese). doi: 10.3969/j.issn.1004-132X.2012.18.007http://dx.doi.org/10.3969/j.issn.1004-132X.2012.18.007
李征, 丁文锋, 周欢, 等. 基于混合材料模型的颗粒增强钛基复材高速磨削温度研究[J]. 机械工程学报, 2019, 55(21): 186-198.
LI Z, DING W F, ZHOU H, et al. Grinding temperature of particulate reinforced titanium matrix composites in high-speed grinding based on multi-material model[J]. Journal of Mechanical Engineering, 2019, 55(21): 186-198.(in Chinese)
0
Views
14
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution