1.西安邮电大学 电子工程学院,陕西 西安710121
2.西安电子科技大学 电子工程学院,陕西 西安710071
扫 描 看 全 文
刘敬,李洋,刘逸.基于分数阶微分的高光谱图像特征提取与分类[J].光学精密工程,2023,31(21):3221-3236.
LIU Jing,LI Yang,LIU Yi.Hyperspectral images feature extraction and classification based on fractional differentiation[J].Optics and Precision Engineering,2023,31(21):3221-3236.
刘敬,李洋,刘逸.基于分数阶微分的高光谱图像特征提取与分类[J].光学精密工程,2023,31(21):3221-3236. DOI: 10.37188/OPE.20233121.3221.
LIU Jing,LI Yang,LIU Yi.Hyperspectral images feature extraction and classification based on fractional differentiation[J].Optics and Precision Engineering,2023,31(21):3221-3236. DOI: 10.37188/OPE.20233121.3221.
针对高光谱遥感图像的特征提取与地物分类,提出一种基于分数阶微分的高光谱图像特征提取方法,设计二维分数阶微分掩模提取高光谱图像的像素空间分数阶微分(SpaFD)特征,并提出一种空谱联合准则用于选取微分掩模阶数。为充分利用高光谱图像的空间特征与光谱特征,将SpaFD特征与原始特征直连融合获得SpaFD-Spe-Spa混合特征,并采用三维卷积神经网络(3DCNN)、先采用主成分分析(PCA)对像素光谱进行降维处理再送入三维卷积神经网络(3DCNN,PCA,)以及采用混合光谱网络(HybridSN)验证SpaFD-Spe-Spa混合特征的有效性。实验中分别采用3✕3,5✕5和7✕7的分数阶微分掩模进行空间特征提取,4个真实高光谱图像的实验结果表明,所提取的SpaFD特征和SpaFD-Spe-Spa特征可有效提升高光谱图像的地物分类精度,且SpaFD-Spe-Spa特征对地物分类准确率的提升更为明显:SpaFD特征相比原始特征在Indian Pines,Botswana,Pavia University和Salinas 4个数据上的分类识别率在最优情况下分别提升了3.87%,1.42%,2.41%和2.87%;SpaFD-Spe-Spa特征相比原始特征在Indian Pines,Botswana,Pavia University和Salinas 4个数据上的分类识别率在最优情况下分别提升了3.90%,5.62%,3.35%和5.18%。
Herein, a feature extraction method based on fractional differentiation is proposed for the feature extraction and classification of hyperspectral images. Two-dimensional (2D) fractional differential masks are designed to extract the pixel spatial fractional differential (SpaFD) feature of hyperspectral images, and a spectral–spatial joint criterion is proposed to select the differential mask order. To entirely utilize the spatial and spectral features of hyperspectral images, the SpaFD feature is fused with the original feature via a direct connection to obtain a mixed feature (SpaFD-Spe-Spa). The effectiveness of the SpaFD-Spe-Spa feature is verified on a 3D convolutional neural network (3DCNN), 3DCNN after pixel spectrum dimensionality reduction using principal component analysis (3DCNNPCA), and hybrid spectral network (HybridSN). In the experiment, masks with sizes of 3×3, 5×5, and 7×7 are used to perform feature extraction. Experiments on four real hyperspectral image datasets reveal that the extracted SpaFD and SpaFD-Spe-Spa features are effective in hyperspectral image classification, and the SpaFD-Spe-Spa feature significantly improves classification accuracy. When compared with the original features in the Indian Pines, Botswana, Pavia University, and Salinas datasets, the classification accuracy of the SpaFD feature is improved by 3.87%, 1.42%, 2.41%, and 2.87%, respectively, whereas that of the SpaFD-Spe-Spa feature is improved by 3.90%, 5.62%, 3.35%, and 5.18%, respectively, under optimal conditions.
高光谱图像分类分数阶微分特征提取卷积神经网络
hyperspectral images classificationfractional differentiationfeature extractionconvolutional neural network
刘敬, 李青妍, 刘逸. 基于核加权类对准则的高光谱影像特征提取[J]. 光学 精密工程, 2021, 29(6):1397-1405. doi: 10.37188/OPE.20212906.1397http://dx.doi.org/10.37188/OPE.20212906.1397
LIU J, LI Q Y, LIU Y. Spectral feature extraction of hyperspectral remote sensing images based on kernel class pair-weighted criterion[J]. Opt. Precision Eng., 2021, 29(6):1397-1405.(in Chinese). doi: 10.37188/OPE.20212906.1397http://dx.doi.org/10.37188/OPE.20212906.1397
邵文静, 孙伟伟, 杨刚. 高光谱遥感影像纹理特征提取的对比分析[J]. 遥感技术与应用, 2021, 36(2): 431-440. doi: 10.11873/j.issn.1004-0323.2021.2.0431http://dx.doi.org/10.11873/j.issn.1004-0323.2021.2.0431
SHAO W J, SUN W W, YANG G. Comparison of texture feature extraction methods for hyperspectral imagery classification[J]. Remote Sensing Technology and Application, 2021, 36(2): 431-440.(in Chinese). doi: 10.11873/j.issn.1004-0323.2021.2.0431http://dx.doi.org/10.11873/j.issn.1004-0323.2021.2.0431
闫敬文, 陈宏达, 刘蕾. 高光谱图像分类的研究进展[J]. 光学 精密工程,2019,27(3): 680-693. doi: 10.3788/ope.20192703.0680http://dx.doi.org/10.3788/ope.20192703.0680
YAN J W, CHEN H D, LIU L. Overview of hyperspectral image classification[J]. Opt. Precision Eng., 2019, 27(3): 680-693.(in chinese). doi: 10.3788/ope.20192703.0680http://dx.doi.org/10.3788/ope.20192703.0680
陈静, 张静. 改进高斯过程回归的高光谱空谱联合分类算法[J]. 光学 精密工程, 2019, 27(7):1649-1660. doi: 10.3788/ope.20192707.1649http://dx.doi.org/10.3788/ope.20192707.1649
CHEN J, ZHANG J. Spectral-spatial joint classification of hyperspectral image algorithm based on improved Gaussian process regression[J]. Opt. Precision Eng., 2019, 27(7):1649-1660.(in Chinese). doi: 10.3788/ope.20192707.1649http://dx.doi.org/10.3788/ope.20192707.1649
方帅, 张坤, 张晶, 等. 增强类可分性的高光谱图像分类[J]. 中国图象图形学报, 2021, 26(8):1940-1951. doi: 10.11834/jig.210029http://dx.doi.org/10.11834/jig.210029
FANG SH, ZHANG K, ZHANG J, et al. Hyperspectral image classification with enhanced class separability[J]. Journal of Image and Graphics, 2021, 26(8):1940-1951.(in Chinese). doi: 10.11834/jig.210029http://dx.doi.org/10.11834/jig.210029
LICCIARDI G, MARPU P R, CHANUSSOT J, et al. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 447-451. doi: 10.1109/lgrs.2011.2172185http://dx.doi.org/10.1109/lgrs.2011.2172185
BANDOS T V, BRUZZONE L, CAMPS-VALLS G. Classification of hyperspectral images with regularized linear discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 862-873. doi: 10.1109/tgrs.2008.2005729http://dx.doi.org/10.1109/tgrs.2008.2005729
ZHANG M M, LI W, DU Q. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2018, 27(6): 2623-2634. doi: 10.1109/tip.2018.2809606http://dx.doi.org/10.1109/tip.2018.2809606
LI W, CHEN C, ZHANG M M, et al. Data augmentation for hyperspectral image classification with deep CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(4): 593-597. doi: 10.1109/lgrs.2018.2878773http://dx.doi.org/10.1109/lgrs.2018.2878773
JIA S, DENG B, ZHU J S, et al. Local binary pattern-based hyperspectral image classification with superpixel guidance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 749-759. doi: 10.1109/tgrs.2017.2754511http://dx.doi.org/10.1109/tgrs.2017.2754511
CRUZ-RAMOS C, GARCIA-SALGADO B P, REYES-REYES R, et al. Gabor features extraction and land-cover classification of urban hyperspectral images for remote sensing applications[J]. Remote Sensing, 2021, 13(15): 2914. doi: 10.3390/rs13152914http://dx.doi.org/10.3390/rs13152914
WEI L F, WANG K, LU Q K, et al. Crops fine classification in airborne hyperspectral imagery based on multi-feature fusion and deep learning[J]. Remote Sensing, 2021, 13(15): 2917. doi: 10.3390/rs13152917http://dx.doi.org/10.3390/rs13152917
GUO Y L, BI Q S, LI Y, et al. Sparse representing denoising of hyperspectral data for water color remote sensing[J]. Applied Sciences, 2022, 12(15): 7501. doi: 10.3390/app12157501http://dx.doi.org/10.3390/app12157501
闫汇聪, 刘德山, 陈浪, 等. 散度核协同表示与空谱融合特征的高光谱图像分类算法[J]. 计算机应用与软件, 2023, 40(2): 287-295. doi: 10.3969/j.issn.1000-386x.2023.02.045http://dx.doi.org/10.3969/j.issn.1000-386x.2023.02.045
YAN H C, LIU D SH, CHEN L, et al. A hyperspectral image classification algorithm based on divergence kernel collaborative representation and spatial-spectral fusion feature[J]. Computer Applications and Software, 2023, 40(2): 287-295.(in Chinese). doi: 10.3969/j.issn.1000-386x.2023.02.045http://dx.doi.org/10.3969/j.issn.1000-386x.2023.02.045
FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 2013, 101(3): 652-675. doi: 10.1109/jproc.2012.2197589http://dx.doi.org/10.1109/jproc.2012.2197589
HU Q B, XU W X, LIU X B, et al. Hyperspectral image classification based on bilateral filter with multispatial domain[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. doi: 10.1109/lgrs.2021.3058182http://dx.doi.org/10.1109/lgrs.2021.3058182
SUN W W, LIU K, REN G B, et al. A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102572. doi: 10.1016/j.jag.2021.102572http://dx.doi.org/10.1016/j.jag.2021.102572
YUAN Y, MENG X C, SUN W W, et al. Multi-resolution collaborative fusion of SAR, multispectral and hyperspectral images for coastal wetlands mapping[J]. Remote Sensing, 2022, 14(14): 3492. doi: 10.3390/rs14143492http://dx.doi.org/10.3390/rs14143492
CHEN Y S, LIN Z H, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094-2107. doi: 10.1109/jstars.2014.2329330http://dx.doi.org/10.1109/jstars.2014.2329330
CHEN Y S, ZHAO X, JIA X P. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2381-2392. doi: 10.1109/jstars.2015.2388577http://dx.doi.org/10.1109/jstars.2015.2388577
HU W, HUANG Y Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015: 1-12. doi: 10.1155/2015/258619http://dx.doi.org/10.1155/2015/258619
ALIPOURFARD T, AREFI H, MAHMOUDI S. A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification[C].IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. July 22-27, 2018. Valencia. IEEE, 2018: 4780–4783. doi: 10.1109/igarss.2018.8518956http://dx.doi.org/10.1109/igarss.2018.8518956
CHEN Y S, JIANG H L, LI C Y, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251. doi: 10.1109/tgrs.2016.2584107http://dx.doi.org/10.1109/tgrs.2016.2584107
LIU K, SUN W W, SHAO Y J, et al. Mapping coastal wetlands using transformer in transformer deep network on China ZY1-02D hyperspectral satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022,15: 3891-3903. doi: 10.1109/jstars.2022.3173349http://dx.doi.org/10.1109/jstars.2022.3173349
ROY S K, KRISHNA G, DUBEY S R, et al. HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281. doi: 10.1109/lgrs.2019.2918719http://dx.doi.org/10.1109/lgrs.2019.2918719
蒲亦非, 袁晓, 廖科, 等. 现代信号分析与处理中分数阶微积分的五种数值实现算法[J]. 四川大学学报(工程科学版), 2005, 37(5):118-124. doi: 10.3969/j.issn.1009-3087.2005.05.024http://dx.doi.org/10.3969/j.issn.1009-3087.2005.05.024
PU Y F, YUAN X, LIAO K, et al. Five numerical algorithms of fractional calculus applied in modern signal analyzing and processing[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(5):118-124.(in Chinese). doi: 10.3969/j.issn.1009-3087.2005.05.024http://dx.doi.org/10.3969/j.issn.1009-3087.2005.05.024
陈晓冬, 吉佳瑞, 盛婧, 等. 分数阶微分加权引导滤波对超声图像的纹理保持[J]. 光学 精密工程, 2020, 28(1): 174-181. doi: 10.3788/ope.20202801.0174http://dx.doi.org/10.3788/ope.20202801.0174
CHEN X D, JI J R, SHENG J, et al. Fractional differential weighted guided filtering for image texture preservation for medical ultrasound[J]. Opt. Precision Eng., 2020, 28(1): 174-181.(in Chinese). doi: 10.3788/ope.20202801.0174http://dx.doi.org/10.3788/ope.20202801.0174
MATHIEU B, MELCHIOR P, OUSTALOUP A, et al. Fractional differentiation for edge detection[J]. Signal Processing, 2003, 83(11): 2421-2432. doi: 10.1016/s0165-1684(03)00194-4http://dx.doi.org/10.1016/s0165-1684(03)00194-4
杨柱中, 周激流, 黄梅, 等. 基于分数阶微分的边缘检测[J]. 四川大学学报(工程科学版), 2008, 40(1):152-157.
YANG ZH ZH, ZHOU J L, HUANG M, et al. Edge detection based on fractional differential[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(1):152-157.(in Chinese)
0
Views
6
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution