浏览全部资源
扫码关注微信
长光卫星技术股份有限公司,吉林 长春 130102
Published:25 March 2024,
Received:12 May 2023,
Revised:09 October 2023,
移动端阅览
童鑫,曲友阳,刘洁冰等.低轨光学卫星相控阵数传期间太阳光规避方法[J].光学精密工程,2024,32(06):822-832.
TONG Xin,QU Youyang,LIU Jiebing,et al.Sunlight avoidance planning method for data transmission with phased array of low-earth orbit optical satellites[J].Optics and Precision Engineering,2024,32(06):822-832.
童鑫,曲友阳,刘洁冰等.低轨光学卫星相控阵数传期间太阳光规避方法[J].光学精密工程,2024,32(06):822-832. DOI: 10.37188/OPE.20243206.0822.
TONG Xin,QU Youyang,LIU Jiebing,et al.Sunlight avoidance planning method for data transmission with phased array of low-earth orbit optical satellites[J].Optics and Precision Engineering,2024,32(06):822-832. DOI: 10.37188/OPE.20243206.0822.
为防止低轨光学卫星相控阵数传任务过程中相机进光而对传感器造成损伤,提出了一种相控阵数传任务期间的太阳光姿态规避方法。首先,计算出地心固连坐标系中卫星指向太阳的向量与卫星指向地面数传站的向量,并建立两向量所在平面的单位法向量。其次,以单位法向量为旋转轴使卫星指向地面数传站的向量以相控阵最大离轴角进行旋转,旋转后的向量即为卫星在地心固连坐标系下的太阳光规避向量。然后,通过太阳光规避向量、地心固联坐标系中卫星的位置及地心固联坐标系到轨道坐标系的转换矩阵,规划卫星在轨道坐标系下的太阳光规避姿态并计算出相控阵指向角。最后,在吉林一号高分02D星上进行了仿真分析和在轨试验。仿真结果表明,在相控阵最大波束角为60°的情况下,卫星使用太阳光姿态规避方法进行数传后,在12月份内相机与太阳光夹角在90°以下的概率由传统凝视姿态数传方法的44.1%降低为2.1%。吉林一号高分02D星在轨试验结果表明,近似相同条件下的两次数传任务在使用太阳光姿态规避方法进行数传后,相机与太阳光的夹角由传统凝视姿态的31.3°~152.1°提升为96.3°~180°,验证了太阳光姿态规避方法可在数传任务期间有效规避太阳光,保证了低轨光学卫星相机在轨的安全性和可靠性。
In order to prevent damage to the sensor caused by the camera receiving light during the phased array transmission process of low-earth orbit optical satellites, this paper proposes a sun avoidance method for phased array transmission tasks. Firstly, the vector pointing from the satellite to the sun in the geocentric fixed coordinate system and the vector pointing from the satellite to the ground station for phased array transmission were calculated, and the unit normal vector of the plane containing the two vectors was also calculated. Secondly, the vector pointing from the satellite to the ground station for data transmission was rotated at the maximum off-axis angle of the phased array by using the unit normal vector as the rotation axis, and the resulting vector was the sun avoidance vector of the satellite in the geocentric fixed coordinate system. Then, the expected attitude of the satellite in the orbital coordinate system was calculated by using the sun avoidance vector, the position of the satellite in the geocentric fixed coordinate system, and the transformation matrix from the geocentric fixed coordinate system to the orbital coordinate system, and the phased array pointing angle was also calculated. Finally, mathematical simulations and on-orbit tests of the proposed method were applied for the Jilin1-GF02D satellite. The simulation results show that when the maximum beam angle of the phased array is 60°, the probability of the camera and the sun angle being less than 90° during transmission using the sun avoidance method is reduced from 44.1% using the traditional staring attitude transmission method to 2.1% in December. The on-orbit tests of the Jilin1-GF02D satellite show that, when using the sun avoidance method under approximately the same conditions, the angle between the camera and the sun during transmission is increased from 31.3°-152.1°using the traditional staring attitude to 96.3°-180°, which verifies the feasibility and effectiveness of the sunlight avoidance method.
光学卫星相控阵数传太阳光规避期望姿态吉林一号高分02D星
optical satellitephased array transmissionsunlight avoidanceexpected attitudeJilin1-GF02D satellite
刘飞. 基于改进U-Net网络的光学卫星影像云检测方法研究[D]. 武汉: 武汉大学, 2022.
LIU F. Research on Cloud Detection Method from Optical Satellite Image Based on Improved U-Net Network[D]. Wuhan: Wuhan University, 2022. (in Chinese)
邱炜. 面向空间光学成像任务的敏捷运动体建模与优化控制[D]. 杭州: 浙江大学, 2021.
QIU W. Modeling and Optimization-Based Control of Agile Vehicle for Space Optical Imaging[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
李强, 孔林, 张雷, 等. 多光谱大幅宽光学遥感卫星的热设计及验证[J]. 光学 精密工程, 2020, 28(4): 904-913. doi: 10.3788/OPE.20202804.0904http://dx.doi.org/10.3788/OPE.20202804.0904
LI Q, KONG L, ZHANG L, et al. Thermal design and validation of multispectral max width optical remote sensing satellite[J]. Opt. Precision Eng., 2020, 28(4): 904-913.(in Chinese). doi: 10.3788/OPE.20202804.0904http://dx.doi.org/10.3788/OPE.20202804.0904
柏添, 孔林, 黄健, 等. 低倾角轨道微小遥感卫星的热设计及验证[J]. 光学 精密工程, 2020, 28(11): 2497-2506. doi: 10.37188/OPE.20202811.2497http://dx.doi.org/10.37188/OPE.20202811.2497
BAI T, KONG L, HUANG J, et al. Thermal design and verification of micro remote-sensing satellite in low inclination orbit[J]. Opt. Precision Eng., 2020, 28(11): 2497-2506.(in Chinese). doi: 10.37188/OPE.20202811.2497http://dx.doi.org/10.37188/OPE.20202811.2497
鲁盼, 赵振明, 高腾, 等. 高分辨率立体测绘相机系统热控设计及验证[J]. 北京航空航天大学学报, 2023, 49(4): 768-779.
LU P, ZHAO Z M, GAO T, et al. Thermal control design and verification for high resolution stereo mapping camera system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(4): 768-779.(in Chinese)
刘云鹤, 刘凤晶, 于龙江. GEO光学遥感卫星阳光入侵规避方法[J]. 航天器工程, 2014, 23(6): 24-29. doi: 10.3969/j.issn.1673-8748.2014.06.005http://dx.doi.org/10.3969/j.issn.1673-8748.2014.06.005
LIU Y H, LIU F J, YU L J. Sunlight invation avoidance method of GEO optical remote sensing satellite[J]. Spacecraft Engineering, 2014, 23(6): 24-29.(in Chinese). doi: 10.3969/j.issn.1673-8748.2014.06.005http://dx.doi.org/10.3969/j.issn.1673-8748.2014.06.005
彭洲, 李振松, 乔国栋, 等. 地球静止轨道遥感卫星相机太阳规避设计[J]. 中国空间科学技术, 2015, 35(2): 57-62, 76.
PENG Z, LI Z S, QIAO G D, et al. Sunlight avoidance design for camera of geostationary orbit remote sensing satellite[J]. Chinese Space Science and Technology, 2015, 35(2): 57-62, 76.(in Chinese)
SHI X X, LI X D, WANG Y. A mission planning method for sunlight avoidance period of GEO optical remote sensing satellite[J]. Journal of Physics: Conference Series, 2022, 2364(1): 012056. doi: 10.1088/1742-6596/2364/1/012056http://dx.doi.org/10.1088/1742-6596/2364/1/012056
薛武, 王鹏, 钟灵毓. 线阵垂轨环扫式光学遥感卫星影像几何纠正[J]. 光学 精密工程, 2021, 29(12): 2924-2934. doi: 10.37188/OPE.20212912.2924http://dx.doi.org/10.37188/OPE.20212912.2924
XUE W, WANG P, ZHONG L Y. Geometric correction of optical remote sensing satellite images captured by linear array sensors circular scanning perpendicular to the orbit[J]. Opt. Precision Eng., 2021, 29(12): 2924-2934.(in Chinese). doi: 10.37188/OPE.20212912.2924http://dx.doi.org/10.37188/OPE.20212912.2924
李峰, 万秋华, 刘萌萌, 等. 低轨光学卫星同轨立体成像姿态规划与控制方法[J]. 光学 精密工程, 2022, 30(14): 1682-1693. doi: 10.37188/OPE.20223014.1682http://dx.doi.org/10.37188/OPE.20223014.1682
LI F, WAN Q H, LIU M M, et al. Attitude planning and control method of low-orbit optical satellite along-track stereoscopic imaging[J]. Opt. Precision Eng., 2022, 30(14): 1682-1693.(in Chinese). doi: 10.37188/OPE.20223014.1682http://dx.doi.org/10.37188/OPE.20223014.1682
阎鲁滨. 星载相控阵天线的技术现状及发展趋势[J]. 航天器工程, 2012, 21(3): 11-17. doi: 10.3969/j.issn.1673-8748.2012.03.010http://dx.doi.org/10.3969/j.issn.1673-8748.2012.03.010
YAN L B. Technology status and developing trends of satellite phased array[J]. Spacecraft Engineering, 2012, 21(3): 11-17.(in Chinese). doi: 10.3969/j.issn.1673-8748.2012.03.010http://dx.doi.org/10.3969/j.issn.1673-8748.2012.03.010
AL-RAWI A, DUBOK A, GELUK S J, et al. Increasing the EIRP by Using FPA-Fed Reflector Antennas[C]. 2016 IEEE International Symposium on Antennas and Propagation (APSURSI). June 26-July 1, 2016. Fajardo, PR, USA. IEEE, 2016: 1623-1624. doi: 10.1109/aps.2016.7696518http://dx.doi.org/10.1109/aps.2016.7696518
于立, 雷柳洁, 张凯, 等. 低轨星座多波束相控阵天线研究进展与发展趋势[J]. 空间电子技术, 2022, 19(6): 1-11. doi: 10.3969/j.issn.1674-7135.2022.06.001http://dx.doi.org/10.3969/j.issn.1674-7135.2022.06.001
YU L, LEI L J, ZHANG K, et al. Research progress and development trends on low-earth-orbit spaceborne multi-beam phased array antennas[J]. Space Electronic Technology, 2022, 19(6): 1-11.(in Chinese). doi: 10.3969/j.issn.1674-7135.2022.06.001http://dx.doi.org/10.3969/j.issn.1674-7135.2022.06.001
SCHUSS J J, UPTON J, MYERS B, et al. The IRIDIUM main mission antenna concept[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(3): 416-424. doi: 10.1109/8.768775http://dx.doi.org/10.1109/8.768775
DIETRICH F J, METZEN P, MONTE P. The Globalstar cellular satellite system[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(6): 935-942. doi: 10.1109/8.686783http://dx.doi.org/10.1109/8.686783
YAJIMA M, KURODA T, MAEDA T, et al. Active phased array antenna for WINDS Satellite[C]. 25th AIAA International Communications Satellite Systems Conference(organized by APSCC), 2007: 3240. doi: 10.2514/6.2007-3240http://dx.doi.org/10.2514/6.2007-3240
任波, 赵良波, 朱富国. 高分三号卫星C频段多极化有源相控阵天线系统设计[J]. 航天器工程, 2017, 26(6): 68-74. doi: 10.3969/j.issn.1673-8748.2017.06.011http://dx.doi.org/10.3969/j.issn.1673-8748.2017.06.011
REN B, ZHAO L B, ZHU F G. Design of C-band multi-polarized active phased array antenna system for GF-3 satellite[J]. Spacecraft Engineering, 2017, 26(6): 68-74.(in Chinese). doi: 10.3969/j.issn.1673-8748.2017.06.011http://dx.doi.org/10.3969/j.issn.1673-8748.2017.06.011
陈雪芹, 耿云海, 王峰, 等. 敏捷小卫星对地凝视姿态跟踪控制[J]. 光学 精密工程, 2012, 20(5): 1031-1040. doi: 10.3788/ope.20122005.1031http://dx.doi.org/10.3788/ope.20122005.1031
CHEN X Q, GENG Y H, WANG F, et al. Staring imaging attitude tracking control of agile small satellite[J]. Opt. Precision Eng., 2012, 20(5): 1031-1040.(in Chinese). doi: 10.3788/ope.20122005.1031http://dx.doi.org/10.3788/ope.20122005.1031
张刘, 张晓寒, 岳庆兴, 等. 光学遥感卫星凝视成像姿态规划及快速仿真方法[J]. 吉林大学学报(工学版), 2021, 51(1): 340-348.
ZHANG L, ZHANG X H, YUE Q X, et al. Attitude planning and fast simulation method for staring imaging of optical remote sensing satellite[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 340-348.(in Chinese)
章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998.
ZHANG R W. Satellite Orbit Attitude Dynamics and Control[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1998.(in Chinese)
国志磊, 安雪滢, 罗宗富, 等. 轨道动力学方法用于太阳位置精确解算的比较研究[J]. 太阳能学报, 2020, 41(6): 188-195.
GUO Z L, AN X Y, LUO Z F, et al. Comparative research of solar position precise algorithm based on methods of orbital mechanics[J]. Acta Energiae Solaris Sinica, 2020, 41(6): 188-195.(in Chinese)
李文, 赵永超. 地球椭球模型中太阳位置计算的改进[J]. 中国科学院大学学报, 2019, 36(3): 363-375. doi: 10.7523/j.issn.2095-6134.2019.03.010http://dx.doi.org/10.7523/j.issn.2095-6134.2019.03.010
LI W, ZHAO Y C. The improvement in solar position calculations in the ellipsoid model of the earth[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(3): 363-375.(in Chinese). doi: 10.7523/j.issn.2095-6134.2019.03.010http://dx.doi.org/10.7523/j.issn.2095-6134.2019.03.010
0
Views
12
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution