浏览全部资源
扫码关注微信
1.上海工程技术大学 机械与汽车工程学院,上海 201620
2.格鲁斯特大学 计算与工程学院,英国 切尔滕纳姆 GL50 2RH
3.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
4.上海交通大学 机械与动力工程学院 机械系统与振动国家重点实验室,上海 200240
Published:25 March 2024,
Received:12 November 2023,
Revised:06 December 2023,
移动端阅览
王雯雯,赖磊捷,李朋志等.压电微动台数据驱动迭代前馈补偿与自适应抑振[J].光学精密工程,2024,32(06):833-842.
WANG Wenwen,LAI Leijie,LI Pengzhi,et al.Data-driven iterative feedforward compensation and adaptive vibration suppression of piezoelectric micro-motion stage[J].Optics and Precision Engineering,2024,32(06):833-842.
王雯雯,赖磊捷,李朋志等.压电微动台数据驱动迭代前馈补偿与自适应抑振[J].光学精密工程,2024,32(06):833-842. DOI: 10.37188/OPE.20243206.0833.
WANG Wenwen,LAI Leijie,LI Pengzhi,et al.Data-driven iterative feedforward compensation and adaptive vibration suppression of piezoelectric micro-motion stage[J].Optics and Precision Engineering,2024,32(06):833-842. DOI: 10.37188/OPE.20243206.0833.
为消除压电驱动柔性微定位平台高精控制对平台不确定动力学模型的依赖性,提出了一种数据驱动无模型迭代前馈补偿和自适应陷波滤波结合的控制方法来提高平台的跟踪性能。首先,建立了数据驱动无模型迭代前馈控制器,提高系统对噪声和其他干扰的鲁棒性,同时,证明了在无模型迭代前馈作用下,连续参考输入跟踪误差的有界性和闭环系统的稳定性;其次,构建了自适应陷波滤波器来消除平台谐振的影响,对误差信号进行快速傅里叶变换,并设计谐振频率在线提取算法,实现对陷波滤波器参数的在线实时整定,来进一步提升轨迹跟踪精度;最后,利用所设计的无模型迭代前馈控制器和自适应陷波滤波器对压电微动台进行轨迹跟踪实验。实验结果表明:在跟踪三角波信号时,与单独比例-积分(Proportional Integral,PI)控制和结合自适应陷波滤波器的PI控制相比较,最大跟踪误差分别减小78.25%和70.83%,能够有效提升平台的稳定性和跟踪精度。
In order to eliminate the dependence of the high-precision control of the piezoelectric driven compliant micro-positioning stage on its uncertain dynamic model, a data-driven model-free iterative feedforward compensation and adaptive notch filtering control method were proposed to improve the tracking performance of the stage. Firstly, a data-driven model-free iterative feedforward controller is established to improve the robustness of the system to noise and other interferences, and at the same time, the boundedness of the tracking error with continuous reference input and the stability of the closed-loop system under the action of model-free iterative feed-forward are demonstrated. Secondly, an adaptive notch filter was constructed to eliminate the influence of stage resonance, a fast Fourier transform was performed on the error signal, and an online resonant frequency extraction algorithm was designed to realize the online real-time tuning of the notch filter parameters to further improve the trajectory tracking accuracy. Finally, the trajectory tracking experiment of the piezoelectric micro-motion stage was carried out by using the designed model-free iterative feedforward controller and adaptive notch filter. The experimental results show that when tracking the triangular wave signal, the maximum tracking error is reduced by 78.25% and 70.83%, respectively, compared with the PI controllor alone and the PI controllor combined with the adaptive notch filter, which can effectively improve the stability and trajectory tracking accuracy of the stage.
压电微动台数据驱动迭代前馈在线谐振抑制自适应陷波滤波器
piezoelectric micro-motion stagedata-driven iterative feedforwardonline resonance suppressionadaptive notch filter
WANG G W, XU Q S. Design and precision position/force control of a piezo-driven microinjection system[J]. ASME Transactions on Mechatronics, 2017, 22(4): 1744-1754. doi: 10.1109/tmech.2017.2698139http://dx.doi.org/10.1109/tmech.2017.2698139
SHARMA E, RATHI R, MISHARWAL J, et al. Evolution in lithography techniques: microlithography to nanolithography[J]. Nanomaterials, 2022, 12(16): 2754. doi: 10.3390/nano12162754http://dx.doi.org/10.3390/nano12162754
朱志远, 朱紫辉, 周晓勤, 等. 三轴电磁-压电混合驱动快速刀具伺服的轨迹跟踪控制[J]. 光学 精密工程, 2023, 31(15): 2236-2247. doi: 10.37188/OPE.20233115.2236http://dx.doi.org/10.37188/OPE.20233115.2236
ZHU Z Y, ZHU Z H, ZHOU X Q, et al. Trajectory tracking control for tri-axial fast tool servo using hybrid electromagnetic-piezoelectric actuation[J]. Opt. Precision Eng., 2023, 31(15): 2236-2247.(in Chinese). doi: 10.37188/OPE.20233115.2236http://dx.doi.org/10.37188/OPE.20233115.2236
俞军涛, 焦宗夏, 吴帅. 基于液压微位移放大结构的新型压电陶瓷直接驱动阀设计及仿真[J]. 机械工程学报, 2013, 49(2): 151-158. doi: 10.3901/jme.2013.02.151http://dx.doi.org/10.3901/jme.2013.02.151
YU J T, JIAO Z X, WU S. Design and simulation study on new servo valve direct driven by piezoelectric actuator using hydraulic amplification[J]. Journal of Mechanical Engineering, 2013, 49(2): 151-158.(in Chinese). doi: 10.3901/jme.2013.02.151http://dx.doi.org/10.3901/jme.2013.02.151
CHEN Z, SHI J J, LI Z P, et al. A damped decoupled XY nanopositioning stage embedding graded local resonators[J]. ASME Transactions on Mechatronics, 2022, 27(1): 256-267. doi: 10.1109/tmech.2021.3062891http://dx.doi.org/10.1109/tmech.2021.3062891
TAO Y D, LI L L, LI H X, et al. High-bandwidth tracking control of piezoactuated nanopositioning stages via active modal control[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 2998-3006. doi: 10.1109/tase.2021.3104478http://dx.doi.org/10.1109/tase.2021.3104478
王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学 精密工程, 2018, 26(10): 2484-2492. doi: 10.3788/ope.20182610.2484http://dx.doi.org/10.3788/ope.20182610.2484
WANG Z Y, JIA G X. Asymmetric hysteresis modeling and internal model control of piezoceramic actuators[J]. Opt. Precision Eng., 2018, 26(10): 2484-2492.(in Chinese). doi: 10.3788/ope.20182610.2484http://dx.doi.org/10.3788/ope.20182610.2484
顾胜良, 王建平, 胡红专, 等. 基于Preisach模型的光纤定位单元R机构精定位的实现[J]. 光学 精密工程, 2022, 30(18): 2205-2218. doi: 10.37188/OPE.20223018.2205http://dx.doi.org/10.37188/OPE.20223018.2205
GU S L, WANG J P, HU H Z, et al. Realization of precise positioning of fiber positioning unit R mechanism based on Preisach model[J]. Opt. Precision Eng., 2022, 30(18): 2205-2218.(in Chinese). doi: 10.37188/OPE.20223018.2205http://dx.doi.org/10.37188/OPE.20223018.2205
杨晓京, 胡俊文, 李庭树. 压电微定位台的率相关动态迟滞建模及参数辨识[J]. 光学 精密工程, 2019, 27(3): 610-618. doi: 10.3788/ope.20192703.0610http://dx.doi.org/10.3788/ope.20192703.0610
YANG X J, HU J W, LI T S. Rate-dependent dynamic hysteresis modeling of piezoelectric micro platform and its parameter identification[J]. Opt. Precision Eng., 2019, 27(3): 610-618.(in Chinese). doi: 10.3788/ope.20192703.0610http://dx.doi.org/10.3788/ope.20192703.0610
SU X H, LIU Z, ZHANG Y, et al. Event-triggered adaptive fuzzy tracking control for uncertain nonlinear systems preceded by unknown prandtl-ishlinskii hysteresis[J]. IEEE Transactions on Cybernetics, 2021, 51(6): 2979-2992. doi: 10.1109/tcyb.2019.2949022http://dx.doi.org/10.1109/tcyb.2019.2949022
杨柳, 石树先, 李东洁. 多延时输入下压电驱动器迟滞建模及实验验证[J]. 光学 精密工程, 2023, 31(10): 1501-1508. doi: 10.37188/OPE.20233110.1501http://dx.doi.org/10.37188/OPE.20233110.1501
YANG L, SHI S X, LI D J. Hysteresis modeling and experimental verification of piezoelectric actuators with multi-delay input[J]. Opt. Precision Eng., 2023, 31(10): 1501-1508.(in Chinese). doi: 10.37188/OPE.20233110.1501http://dx.doi.org/10.37188/OPE.20233110.1501
黄涛, 罗治洪, 陶桂宝, 等. 压电定位平台Hammerstein建模与反馈线性化控制[J]. 光学 精密工程, 2022, 30(14): 1716-1724. doi: 10.37188/OPE.20223014.1716http://dx.doi.org/10.37188/OPE.20223014.1716
HUANG T, LUO Z H, TAO G B, et al. Hammerstein modeling and feedback linearization control for piezoelectric positioning stage[J]. Opt. Precision Eng., 2022, 30(14): 1716-1724.(in Chinese). doi: 10.37188/OPE.20223014.1716http://dx.doi.org/10.37188/OPE.20223014.1716
WANG Y F, ZHOU M L, HOU D W, et al. Composite data driven-based adaptive control for a piezoelectric linear motor[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12. doi: 10.1109/tim.2022.3216412http://dx.doi.org/10.1109/tim.2022.3216412
WANG Y F, YU Y W, SHEN C L, et al. Precise motion tracking of piezo-actuated stages via a neural network-based data-driven adaptive predictive controller[J]. Nonlinear Dynamics, 2023, 111(20): 19047-19072. doi: 10.1007/s11071-023-08892-yhttp://dx.doi.org/10.1007/s11071-023-08892-y
MESBAH M, SHAFIQ M, SALEEM A, et al. A data-driven controller for position tracking of a long-stroke piezoelectric actuator[J]. Microsystem Technologies, 2023, 29(2): 211-221. doi: 10.1007/s00542-022-05407-4http://dx.doi.org/10.1007/s00542-022-05407-4
CSENCSICS E, SCHLARP J, SCHITTER G. High-performance hybrid-reluctance-force-based tip/tilt system: design, control, and evaluation[J]. ASME Transactions on Mechatronics, 2018, 23(5): 2494-2502. doi: 10.1109/tmech.2018.2866272http://dx.doi.org/10.1109/tmech.2018.2866272
王建敏, 吴云洁, 刘佑民, 等. 基于数字滤波器的伺服系统谐振抑制方法[J]. 北京航空航天大学学报, 2015, 41(3): 485-491. doi: 10.13700/j.bh.1001-5965.2014.0218http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0218
WANG J M, WU Y J, LIU Y M, et al. Resonance suppression method based on digital filter for servo system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 485-491.(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0218http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0218
APHALE S S, FLEMING A J, REZA MOHEIMANI S O. Integral resonant control of collocated smart structures[J]. Smart Materials and Structures, 2007, 16(2): 439-446. doi: 10.1088/0964-1726/16/2/023http://dx.doi.org/10.1088/0964-1726/16/2/023
LI L L, LI C X, GU G Y, et al. Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages[J]. Mechatronics, 2017, 47: 97-104. doi: 10.1016/j.mechatronics.2017.09.003http://dx.doi.org/10.1016/j.mechatronics.2017.09.003
0
Views
16
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution