浏览全部资源
扫码关注微信
1.太原科技大学 机械工程学院,山西 太原 030024
2.西安交通大学 机械工程学院,陕西 西安 710049
Published:25 May 2024,
Received:17 October 2023,
Revised:20 February 2024,
移动端阅览
王志武,庄健,宁少慧等.微流体压力驱动的扫描电化学池显微镜长时间稳定成像[J].光学精密工程,2024,32(10):1528-1537.
WANG Zhiwu,ZHUANG Jian,NING Shaohui,et al.Study on long-term and stable imaging approach of SECCM using microfluid pressure drive[J].Optics and Precision Engineering,2024,32(10):1528-1537.
王志武,庄健,宁少慧等.微流体压力驱动的扫描电化学池显微镜长时间稳定成像[J].光学精密工程,2024,32(10):1528-1537. DOI: 10.37188/OPE.20243210.1528.
WANG Zhiwu,ZHUANG Jian,NING Shaohui,et al.Study on long-term and stable imaging approach of SECCM using microfluid pressure drive[J].Optics and Precision Engineering,2024,32(10):1528-1537. DOI: 10.37188/OPE.20243210.1528.
为了提升扫描电化学池显微镜(SECCM)对复杂形貌表面电化学活性成像能力,以及避免探针尖端微液滴蒸发和结晶,进而实现长时间、稳定成像,构建了基于纳米移液管探针微流体压力驱动的扫描电化学成像系统。对探针尖端开口处的微液滴流量补偿、复杂表面形貌同步电化学活性成像可靠性等进行了研究。首先,构建了基于移液管探针微流体压力驱动的SECCM扫描成像系统。接着,建立了移液管微流体压力驱动的探针检测数值模型,研究了探针末端背压与探针尖端流体流量间的关系。然后,在理论模型分析的基础上,实验测试了微流体驱动新方法对具有较大表面形貌特征的玻碳电极材料和铝合金材料表面高分辨率形貌和电化学活性同步成像能力。实验结果表明:新方法可对硬质材料表面(样品表面高度起伏为探针开口直径20倍以上)实现长时间、稳定的电化学成像。新系统的研制将为研究人员在材料电化学、金属材料腐蚀研究提供强有力的工具。
To enhance the imaging capability (achieve long-term and stable imaging) and avoid the evaporation and crystallization of micro-droplets at the probe tip in the scanning electrochemical cell microscopy (SECCM), a scanning electrochemical imaging system was constructed and microfluidic pressure-driven was used in its nanopipette probe end. The new system has advantages in terms of electrochemical imaging especially for the complex sample surface. The compensation of micro-droplet flow rate at the opening of the probe tip was studied. The research related reliability of synchronous electrochemical active and surface topography imaging also was conducted. Firstly, a SECCM imaging system with a microfluidic pressure-driven was constructed. Then, a probe detection-based numerical model that use microfluidic pressure-driven pipette was established, and the relationship between the back pressure and the fluid flow rate at the back and tip of the probe was studied. Furthermore, with the theoretical model analysis, the novel microfluidic driving method was experimentally tested for its ability to synchronously image the high-resolution topography and electrochemical activity of carbon electrode materials and aluminum alloy materials with large surface morphology characteristics. The experimental results indicate that the new method can achieve long-term and stable electrochemical imaging on the surface of hard materials (with sample surface height fluctuations greater than 20 times the probe opening diameter). The development of the new system will provide researchers with powerful tools for studying material electrochemistry and metal material corrosion.
扫描电化学池显微镜局部高分辨率循环伏安测量形貌电化学活性
scanning electrochemical cell microscopylocalized and high-resolutioncyclic voltammetrytopographyelectrochemical activity
EBEJER N, SCHNIPPERING M, COLBURN A W, et al. Localized high resolution electrochemistry and multifunctional imaging: scanning electrochemical cell microscopy[J]. Analytical Chemistry, 2010, 82(22): 9141-9145. doi: 10.1021/ac102191uhttp://dx.doi.org/10.1021/ac102191u
LIU G, HAO L Z, LI H, et al. Topography mapping with scanning electrochemical cell microscopy[J]. Analytical Chemistry, 2022, 94(13): 5248-5254. doi: 10.1021/acs.analchem.1c04692http://dx.doi.org/10.1021/acs.analchem.1c04692
SANTANA SANTOS C, JAATO B N, SANJUÁN I, et al. Operando scanning electrochemical probe microscopy during electrocatalysis[J]. Chemical Reviews, 2023, 123(8): 4972-5019. doi: 10.1021/acs.chemrev.2c00766http://dx.doi.org/10.1021/acs.chemrev.2c00766
庄健, 王志武, 廖晓波. 应用于高速离子电导扫描成像的双压电定位平台[J]. 光学 精密工程, 2020, 28(10): 2203-2214. doi: 10.37188/OPE.20202810.2203http://dx.doi.org/10.37188/OPE.20202810.2203
ZHUANG J, WANG Z W, LIAO X B. Dual-stage piezo nanopositioner for high-speed ion conductance microscopy imaging[J]. Opt. Precision Eng., 2020, 28(10): 2203-2214.(in Chinese). doi: 10.37188/OPE.20202810.2203http://dx.doi.org/10.37188/OPE.20202810.2203
TAO B L, UNWIN P R, BENTLEY C L. Nanoscale variations in the electrocatalytic activity of layered transition-metal dichalcogenides[J]. The Journal of Physical Chemistry C, 2020, 124(1): 789-798. doi: 10.1021/acs.jpcc.9b10279http://dx.doi.org/10.1021/acs.jpcc.9b10279
CHENG L, JIN R, JIANG D C, et al. Scanning electrochemical cell microscopy platform with local electrochemical impedance spectroscopy[J]. Analytical Chemistry, 2021, 93(49): 16401-16408. doi: 10.1021/acs.analchem.1c02972http://dx.doi.org/10.1021/acs.analchem.1c02972
TETTEH E B, VALAVANIS D, DAVIDDI E, et al. Fast Li-ion storage and dynamics in TiO2Nanoparticle clusters probed by smart scanning electrochemical cell microscopy[J]. Angewandte Chemie International Edition, 2023, 62(9): 2214493. doi: 10.1002/anie.202214493http://dx.doi.org/10.1002/anie.202214493
LI Y J, MOREL A, GALLANT D, et al. Controlling surface contact, oxygen transport, and pitting of surface oxide via single-channel scanning electrochemical cell microscopy[J]. Analytical Chemistry, 2022, 94(42): 14603-14610. doi: 10.1021/acs.analchem.2c02459http://dx.doi.org/10.1021/acs.analchem.2c02459
BENTLEY C L, EDMONDSON J, MELONI G N, et al. Nanoscale electrochemical mapping[J]. Analytical Chemistry, 2019, 91(1): 84-108. doi: 10.1021/acs.analchem.8b05235http://dx.doi.org/10.1021/acs.analchem.8b05235
XU X D, VALAVANIS D, CIOCCI P, et al. The new era of high-throughput nanoelectrochemistry[J]. Analytical Chemistry, 2023, 95(1): 319-356. doi: 10.1021/acs.analchem.2c05105http://dx.doi.org/10.1021/acs.analchem.2c05105
WANG Y F, LI M Y, REN H. Voltammetric mapping of hydrogen evolution reaction on Pt locally via scanning electrochemical cell microscopy[J]. ACS Measurement Science Au, 2022, 2(4): 304-308. doi: 10.1021/acsmeasuresciau.2c00012http://dx.doi.org/10.1021/acsmeasuresciau.2c00012
WAHAB O J, KANG M, UNWIN P R. Scanning electrochemical cell microscopy: A natural technique for single entity electrochemistry[J]. Current Opinion in Electrochemistry, 2020, 22: 120-128. doi: 10.1016/j.coelec.2020.04.018http://dx.doi.org/10.1016/j.coelec.2020.04.018
LIU Y L, LU X X, PENG Y, et al. Electrochemical visualization of gas bubbles on superaerophobic electrodes using scanning electrochemical cell microscopy[J]. Analytical Chemistry, 2021, 93(36): 12337-12345. doi: 10.1021/acs.analchem.1c02099http://dx.doi.org/10.1021/acs.analchem.1c02099
WAHAB O J, DAVIDDI E, XIN B, et al. Proton transport through nanoscale corrugations in two-dimensional crystals[J]. Nature, 2023, 620: 782-786. doi: 10.1038/s41586-023-06247-6http://dx.doi.org/10.1038/s41586-023-06247-6
TETTEH E B, BANKO L, KRYSIAK O A, et al. Zooming-in–Visualization of active site heterogeneity in high entropy alloy electrocatalysts using scanning electrochemical cell microscopy[J]. Electrochemical Science Advances, 2022, 2(3): e2100105. doi: 10.1002/elsa.202100105http://dx.doi.org/10.1002/elsa.202100105
LAI Z G, LI D S, CAI S Y, et al. Small-area techniques for micro- and nanoelectrochemical characterization: a review[J]. Analytical Chemistry, 2023, 95(1): 357-373. doi: 10.1021/acs.analchem.2c04551http://dx.doi.org/10.1021/acs.analchem.2c04551
BENTLEY C L, KANG M, UNWIN P R. Nanoscale structure dynamics within electrocatalytic materials[J]. Journal of the American Chemical Society, 2017, 139(46): 16813-16821. doi: 10.1021/jacs.7b09355http://dx.doi.org/10.1021/jacs.7b09355
刘丹卿, 张丙兴, 赵国强, 等. 原位电化学扫描探针显微镜技术在电催化领域的应用进展(英文)[J]. Chinese Journal of Catalysis, 2023, 44(4): 93-120.
LIU D Q, ZHANG B X, ZHAO G Q, et al. Advanced in-situ electrochemical scanning probe microscopies in electrocatalysis[J]. Chinese Journal of Catalysis, 2023, 44(4): 93-120.
WANG Y F, LI M Y, GORDON E, et al. Mapping the kinetics of hydrogen evolution reaction on Ag via pseudo-single-crystal scanning electrochemical cell microscopy[J]. 催化学报 (英文), 2022, 43(12): 3170-3176.(in Chinese)
王雨菲, 李明阳, GordonEmma, 等. 通过拟单晶扫描电化学池显微镜研究银上析氢反应动力学[J]. Chinese Journal of Catalysis, 2022, 43(12): 3170-3176.
JIN R, ZHOU W T, XU Y Y, et al. Electrochemical visualization of membrane proteins in single cells at a nanoscale using scanning electrochemical cell microscopy[J]. Analytical Chemistry, 2023, 95(27): 10172-10177. doi: 10.1021/acs.analchem.3c00114http://dx.doi.org/10.1021/acs.analchem.3c00114
ZHUANG J, WANG Z W, ZHENG Q Q, et al. Scanning electrochemical cell microscopy stable imaging method with a backpressure at the back of its nanopipet[J]. IEEE Sensors Journal, 2021, 21(4): 5240-5248. doi: 10.1109/jsen.2020.3032425http://dx.doi.org/10.1109/jsen.2020.3032425
庄健, 高丙立, 王志武, 等. 扫描电化学池显微镜阿基米德螺旋快速扫描方法的研究[J]. 仪器仪表学报, 2019, 40(12): 175-184.
ZHUANG J, GAO B L, WANG Z W, et al. Study on the Archimedes spiral rapid scanning method for scanning electrochemical cell microscope[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 175-184.(in Chinese)
0
Views
24
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution