1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国人民解放军95859部队,甘肃 酒泉 735000
[ "赵立荣(1971-),女,吉林桦甸人,博士,研究员,1999年于中科院大学获得硕士学位,2017年于长春理工大学获得博士学位,主要从事视频图像分析、大数据与人工智能等研究。E-mail: cczhaolirong@163.com" ]
[ "袁光福(1987-),男,重庆九龙坡人,高级工程师,2010年于解放军理工大学获得学士学位,2020年于电子科技大学获得硕士学位,主要从事光学测量技术等方面的研究。E-mail: 670230520@qq.com" ]
扫 描 看 全 文
赵立荣,袁光福,吴冬等.经纬仪最佳一致逼近多项式速度实时求解[J].光学精密工程,2023,31(24):3549-3558.
ZHAO Lirong,YUAN Guangfu,WU Dong,et al.Real-time solution of optimal uniform approximation polynomial velocity for theodolite[J].Optics and Precision Engineering,2023,31(24):3549-3558.
赵立荣,袁光福,吴冬等.经纬仪最佳一致逼近多项式速度实时求解[J].光学精密工程,2023,31(24):3549-3558. DOI: 10.37188/OPE.20233124.3549.
ZHAO Lirong,YUAN Guangfu,WU Dong,et al.Real-time solution of optimal uniform approximation polynomial velocity for theodolite[J].Optics and Precision Engineering,2023,31(24):3549-3558. DOI: 10.37188/OPE.20233124.3549.
利用经纬仪进行速度实时求解,一直是测控领域难题,为了提高经纬仪求解速度的实时性及高精度,激光测距光电经纬仪,在反复实验中,提出了一种最佳一致逼近多项式速度求解方法,即保证了速度实时性又保证了速度的精度。首先,利用单站经纬仪加激光测距获得目标空间位置,对激光测距信息采用改进的最小二乘法进行拟合滤波;然后根据求解速度模型,计算速度初值;在采用多项式逼近速度真值时,采用常规的表达形式会产生很大的计算误差,为了减少计算误差,多项式采用三次切比雪夫多项式组合的方式获得最佳一致逼近多项式计算速度函数;最佳一致逼近多项式速度函数使用三次有限差分方法识别速度野值,获得实时、高精度的目标速度值。激光测距经纬仪测速的指标包括实时性(延时<100 ms)和精度(误差<1 m/s)两个指标,把加载在无人机上的较高精度GPS的测速值作为比对值,采用多种算法计算目标速度,实验结果表明:高斯函数方法速度实时性好,但测量速度精度>1.5 m/s;卡尔曼方法求速度精度很好,但是因为用了大量的历史数据,速度值滞后;本文最佳一致逼近多项式法计算得到的速度,实时性好,延时50 ms;速度精度均方差为0.8 m/s,满足设备的指标要求。
The use of a theodolite for real-time velocity calculation has always been a challenge in the field of measurement and control. To improve the real time and high accuracy of theodolite solutions, the laser ranging optoelectronic theodolite project has proposed an optimal uniform approximation polynomial velocity solution method through repeated experiments, which ensures both real-time and accurate velocity. First, a single station theodolite and laser ranging are used to obtain the spatial position of the target, and an improved least squares method is used to fit and filter distance measured by the laser. Then, by solving the velocity model, the initial velocity value is calculated. When using polynomials to approximate the true value of velocity, using conventional expressions can result in significant computational errors. To reduce computational errors, polynomials are combined with cubic Chebyshev polynomials to obtain the optimal uniform approximation polynomial for calculating the velocity function. The optimal uniform approximation polynomial velocity function uses the cubic finite difference method to identify the velocity outliers and obtain real-time and high-precision target velocity values. The indicators of laser-ranging theodolite speed measurement include real time ability (delay<100 ms) and accuracy (error<1 m/s). The speed measurement value of GPS loaded on the UAV is taken as the true value, and multiple algorithms are used to calculate the target speed. The test results show that the Gaussian function method for speed calculation has good real-time performance; however, the speed measurement accuracy is >1.5 m/s. The Kalman method has good accuracy in calculating velocity; however, owing to the use of a large amount of historical data, the velocity value lags behind. The speed calculated by the optimal uniform approximation polynomial method in this study has good real-time performance and a delay of 50 ms. The mean square deviation of speed accuracy is 0.8 m/s, which meets the equipment’s indicator requirements.
最佳一致逼近速度求解高斯速度求解卡尔曼滤波速度求解有限差分法
Optimal Uniform Approximation(OUA)Gaussian velocity solvingKalman filtering speed solutionfinite difference
ZHAO L R, CAO Y G. The method on the measurement of the aircraft attitude by the spatial cosines relationship of the single station and planes to the intersection the multi-station of electro-optical theodolite[C]. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering.24-26, 2010, Changchun, China. IEEE, 2010: 143-146. doi: 10.1109/cmce.2010.5610381http://dx.doi.org/10.1109/cmce.2010.5610381
ZOU H H. Improvement detecting method of optical axes parallelism of shipboard photoelectrical theodolite based on image processing[J]. Optics and Photonics Journal, 2017, 7(8): 127-133.
贾文武, 刘培正, 唐自力, 等. 靶场适用的光电经纬仪光轴平行性检测[J]. 光学 精密工程, 2020, 28(8): 1670-1677.
JIA W W, LIU P Z, TANG Z L, et al. Detection method for optical-axis parallelism of photoelectric theodolite in range[J]. Opt. Precision Eng., 2020, 28(8): 1670-1677.(in Chinese)
张龙, 王兴理, 马婧, 等. 脉冲雷达测速方法的改进研究[J]. 现代雷达, 2019, 41(10): 74-77.
ZHANG L, WANG X L, MA J, et al. Improvement of pulse radar velocity detection method[J]. Modern Radar, 2019, 41(10): 74-77.(in Chinese)
黄战华, 刘淼, 张伊馨, 等. 高速运动目标的光电精密测速系统误差分析[J]. 光电工程, 2006, 33(3): 58-61.
HUANG Z H, LIU M, ZHANG Y X, et al. Error analysis of precision opto-electronic velocity measurement for high-speed moving object[J]. Opto-Electronic Engineering, 2006, 33(3): 58-61.(in Chinese)
王冰, 张岩岫, 高穹, 等. 基于光电经纬仪的空中目标测速误差分析[J]. 光电子技术, 2019, 39(2):110-113.
WANG B, ZHANG Y X, GAO Q, et al. Error analysis of airborne target velocity measurement by electro-optic theodolite[J]. Optoelectronic Technology, 2019, 39(2):110-113.(in Chinese)
HAECKER J, KROEPLIN B H. An experimental study of visual flight trajectory tracking and pose prediction for the automatic computer control of a miniature airship[C]. SPIE Proceedings, Intelligent Computing: Theory and Applications. Orlando, FL. SPIE, 2003, 5103: 25-36. doi: 10.1117/12.487579http://dx.doi.org/10.1117/12.487579
常景娜, 高慧斌, 乔冠宇. 一种基于传感器的测量目标运动参数方法研究[J]. 传感器与微系统, 2015, 34(11): 19-22. doi: 10.13873/J.1000-9787(2015)11-0019-04http://dx.doi.org/10.13873/J.1000-9787(2015)11-0019-04
CHANG J N, GAO H B, QIAO G Y. Study of a method for measuring target moving parameters based on sensor[J]. Transducer and Microsystem Technologies, 2015, 34(11): 19-22. (in Chinese). doi: 10.13873/J.1000-9787(2015)11-0019-04http://dx.doi.org/10.13873/J.1000-9787(2015)11-0019-04
宫志华, 刘志学, 冷雪冰, 等. 一种光雷组合测量求取高精度弹丸切向速度方法[J]. 弹箭与制导学报, 2015, 35(6):119-122. doi: 10.15892/j.cnki.djzdxb.2015.06.030http://dx.doi.org/10.15892/j.cnki.djzdxb.2015.06.030
GONG Z H, LIU Z X, LENG X B, et al. A method of getting high precision ballistic tangential velocity based on united measuring with optical theodolite and radar[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(6): 119-122.(in Chinese). doi: 10.15892/j.cnki.djzdxb.2015.06.030http://dx.doi.org/10.15892/j.cnki.djzdxb.2015.06.030
梁家辉, 李建, 胡绍林. 多套光学经纬仪联合跟踪的容错最小距离平方和定位[J]. 光学 精密工程, 2020, 28(12): 2596-2604. doi: 10.37188/OPE.20202812.2596http://dx.doi.org/10.37188/OPE.20202812.2596
LIANG J H, LI J, HU S L. Joint multiple optical theodolite tracking based outlier-tolerant least distance sum localization[J]. Opt. Precision Eng., 2020, 28(12): 2596-2604. (in Chinese). doi: 10.37188/OPE.20202812.2596http://dx.doi.org/10.37188/OPE.20202812.2596
赵立荣. 基于机器视觉的靶场飞行器姿态测量方法研究[D]. 长春: 长春理工大学, 2016.
ZHAO L R. Methodoligy of Atitude Measurements for Aircrafts in Shooting Range Based on Computer Vision Technique[D]. Changchun: Changchun University of Science and Technology, 2016. (in Chinese)
李强, 崔岩. 切比雪夫多项式在单台经纬仪记忆跟踪中的应用[J]. 激光与光电子学进展, 2013, 50(4): 169-173. doi: 10.3788/lop50.042301http://dx.doi.org/10.3788/lop50.042301
LI Q, CUI Y. Application of Chebyshev polynomial in memory tracking with single theodolite[J]. Laser & Optoelectronics Progress, 2013, 50(4): 169-173.(in Chinese). doi: 10.3788/lop50.042301http://dx.doi.org/10.3788/lop50.042301
寇鹏, 智帅峰, 程耘, 等. 空间目标自适应光学图像椭圆部件检测[J]. 中国光学, 2022, 15(3): 454-463. doi: 10.37188/co.2021-0208http://dx.doi.org/10.37188/co.2021-0208
KOU P, ZHI S F, CHENG Y, et al. Detection of elliptical components in adaptive optical image of space target[J]. Chinese Optics, 2022, 15(3): 454-463.(in Chinese). doi: 10.37188/co.2021-0208http://dx.doi.org/10.37188/co.2021-0208
程博阳, 李婷, 王喻林. 基于视觉显著性加权与梯度奇异值最大的红外与可见光图像融合[J]. 中国光学(中英文), 2022(4): 675-688. doi: 10.37188/co.2022-0124http://dx.doi.org/10.37188/co.2022-0124
CHENG B Y, LI T, WANG Y L. Fusion of infrared and visible light images based on visual saliency weighting and maximum gradient singular value[J]. Chinese Optics, 2022(4): 675-688.(in Chinese). doi: 10.37188/co.2022-0124http://dx.doi.org/10.37188/co.2022-0124
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构