1.东华理工大学 信息工程学院,江西 南昌 330013
2.东华理工大学 软件学院,江西 南昌 330013
3.江西省核地学数据科学与系统工程技术研究中心,江西 南昌 330013
E-mail:yzlyx98@sina.com
扫 描 看 全 文
袁兆林,吴永炜,余璐瑶等.Ga掺杂ZnO微米棒紫外光探测器制备与特性[J].光学精密工程,
YUAN Zhaolin,WU Yongwei,YU Luyao,et al.Fabrications and characteristics of Ga-doped ZnO microrods ultraviolet photodetectors[J].Optics and Precision Engineering,
袁兆林,吴永炜,余璐瑶等.Ga掺杂ZnO微米棒紫外光探测器制备与特性[J].光学精密工程, DOI:10.37188/OPE.XXXXXXXX.0001
YUAN Zhaolin,WU Yongwei,YU Luyao,et al.Fabrications and characteristics of Ga-doped ZnO microrods ultraviolet photodetectors[J].Optics and Precision Engineering, DOI:10.37188/OPE.XXXXXXXX.0001
为了获得高性能和低成本的氧化锌(ZnO)基紫外光探测器,使用Ga掺杂ZnO(ZnO:Ga)作为光敏层有望实现它。本文采用简便的水热法,合成了不同Ga掺杂浓度ZnO:Ga微米棒,Ga与Zn的原子比分别为0%(未掺杂)、0.5%,1%,2%和4%。首先使用X射线衍射仪(XRD)测试所有样品的晶体结构,发现它们都为六方纤锌矿结构的ZnO。采用扫描电子显微镜(SEM)观察它们的形貌,它们都呈现棒状结构。进一步,备好叉指图案氟掺杂的氧化锡(FTO)导电玻璃基底,将不同Ga掺杂浓度ZnO∶Ga微米棒分别涂覆在FTO上,制备出五种简单结构紫外光探测器,系统研究了它们的性能。结果表明:所有ZnO∶Ga微米棒紫外光探测器对365 nm紫外光显示出良好的响应。在这些器件中,1% Ga掺杂ZnO:Ga微米棒紫外光探测器具有最佳性能,经计算,在365 nm波长处,它的响应度、增益和比探测率分别为13.13 A/W (5 V),44.63 (5 V),3.31×10,12 ,Jones,响应时间和衰减时间分别为12.3 s和36.4 s。说明在ZnO微米棒中进行合适Ga掺杂,其紫外光探测器性能能有效提高。该研究有助于基于ZnO∶Ga材料的紫外光探测器和其它相关器件发展。
In order to obtain high-performance and low-cost zinc oxide (ZnO) -based ultraviolet photodetectors, it is expected to be achieved by using Ga-doped ZnO (ZnO:Ga) as photosensitive layers. In this paper, we synthetized ZnO:Ga microrods with different Ga doping concentrations via a facile hydrothermal method, the atomic ratios of Ga to Zn were 0% (undoped ZnO), 0.5%, 1%, 2% and 4%, respectively. Firstly, we measured the crystal structures of all the samples using an X-ray diffractometer (XRD), they were all hexagonal wurtzite structure of ZnO. Their morphologies were observed by a scanning electron microscope (SEM), they all displayed rod-like structures. Furthermore, the ZnO:Ga microrods with different Ga concentrations were coated on the interdigital patterned fluorine-doped tin oxide (FTO) glass substrates, respectively, we fabricated five ultraviolet photodetectors with simple structure, their performances were systematically investigated. The results showed that all the ZnO:Ga microrods ultraviolet photodetectors exhibited good responses to 365 nm light. Among these devices, the 1% Ga-doped ZnO microrods ultraviolet photodetector had the optimal performance. By calculation, at a wavelength of 365 nm, its responsivity, gain and specific detectivity were 13.13 A/W (5 V), 44.63 (5V) and 3.31×10,12, Jones, respectively, the response time and decay time were 12.3 s and 36.4 s, respectively. The results indicates that ZnO microrods were doped with a proper Ga concentration, the performance of this ultraviolet photodetector could be effectively improved. This work will be helpful for developing ultraviolet photodetectors and other related devices based on ZnO:Ga materials.
镓掺杂氧化锌微米棒水热法紫外光探测器响应度
Ga-doped ZnO microrodshydrothermal methodultraviolet photodetectorresponsivity
CHEN K, WANG X F, ZOU C, et al. Two-in-one: End-emitting blue LED and self-powered UV photodetector based on single trapezoidal PIN GaN microwire for ambient light UV monitoring and feedback[J]. Small Methods, 2023, 7(6): 2300138. doi: 10.1002/smtd.202300138http://dx.doi.org/10.1002/smtd.202300138
SOSNA-GLEBSKA A, SIBINSKI M, SZCZECINSKA N, et al. UV-Visible silicon detectors with zinc oxide nanoparticles acting as wavelength shifters[J]. Materials Today: Proceedings, 2022, 20: 25-29.
XU X, CHEN J X, CAI S, et al. A real-time Wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector[J]. Advanced Materials, 2018, 30(43): 1803165. doi: 10.1002/adma.201870321http://dx.doi.org/10.1002/adma.201870321
WEI J Y, SHEN L P, ZHENG Z C, et al. The suppression of dark current for achieving high-performance Ga2O3 nanorod array ultraviolet photodetector[J]. Ceramics International, 2022, 48(9): 12112-12117. doi: 10.1016/j.ceramint.2022.01.071http://dx.doi.org/10.1016/j.ceramint.2022.01.071
DALAPATI P, EGAWA T, MIYOSHI M. Current-driven degradation dynamics in GaN/InGaN multi-quantum-wells UV photodetectors fabricated with a high-quality Al2O3 passivation film[J]. Vacuum, 2023, 213: 112159. doi: 10.1016/j.vacuum.2023.112159http://dx.doi.org/10.1016/j.vacuum.2023.112159
朱建华,容萍,任帅,等. ZnO 纳米棒/Bi2S3量子点异质结的制备及光电探测性能研究[J]. 光学 精密工程,2022,30(16):1915-1923. doi: 10.37188/ope.20223016.1915http://dx.doi.org/10.37188/ope.20223016.1915
ZHU J H, RONG P, REN S, et al. Preparation and photodetection performance of ZnO nanorods/Bi2S3 quantum dots heterojunction[J]. Opt. Precision Eng., 2022, 30(16): 1915-1923. (in Chinese). doi: 10.37188/ope.20223016.1915http://dx.doi.org/10.37188/ope.20223016.1915
HAN Y R, WANG X F, FU S H, et al. Ultrahigh detectivity broad spectrum UV photodetector with rapid response speed based on p-β Ga2O3/n-GaN heterojunction fabricated by a reversed substitution doping method[J]. Small, 2023, 19(16): 2206664. doi: 10.1002/smll.202206664http://dx.doi.org/10.1002/smll.202206664
WU H S, ZHANG T, SHEN L Y, et al. Interfacial engineering of SnS/Ga2O3 heterojunction by SnO for a high-performance self-powered solar-blind UV photodetector [J]. Advanced Materials Interfaces, 2022, 9(24): 2200851. doi: 10.1002/admi.202200851http://dx.doi.org/10.1002/admi.202200851
胡韩飞,徐英添,李莉,等.基于溶胶凝胶法制备的CuCr1-xMgxO2/ZnO纳米棒紫外光电探测器[J]. 光学学报, 2022, 42(14): 1423001.
HU H F, XU Y T, LI L, et al. A CuCr1-xMgxO2/ZnO nanorods UV photodetector prepared by Sol-gel method[J]. Acta Optica Sinica, 2022, 42(14): 1423001. (in Chinese)
NING Y, ZHANG Z, TENG F, et al. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction[J]. Small, 2018, 14(13): 1703754. doi: 10.1002/smll.201703754http://dx.doi.org/10.1002/smll.201703754
SHKIR M. Development of highly sensitive Al, Ga, and In-doped ZnO films by the drop casting method for NH3 gas sensing[J]. New Journal of Chemistry, 2023, 47(10): 4880-4887. doi: 10.1039/d2nj05323chttp://dx.doi.org/10.1039/d2nj05323c
KUMAR A G, LI X, DU Y, et al. UV-Photodetector based on heterostructured ZnO/(Ga,Ag)-co-doped ZnO nanorods by cost-effective two-step process[J]. Applied Surface Science, 2020, 509: 144770. doi: 10.1016/j.apsusc.2019.144770http://dx.doi.org/10.1016/j.apsusc.2019.144770
XU M, YUAN Z L, WANG B Y, et al. Hydrothermal synthesis of single‑crystalline Ag‑doped ZnO nanoneedles for ultraviolet detection[J]. Journal of Electronic Materials, 2022, 51(9): 7020-7027. doi: 10.1007/s11664-022-09931-xhttp://dx.doi.org/10.1007/s11664-022-09931-x
MANOHARAN R, MANJCEEVAN A, VELAUTHAMURTY K, et al. Conversion of both photon and mechanical energy into chemical energy using higher concentration of Al doped ZnO[J]. Journal of Alloys and Compounds, 2023, 948: 169712. doi: 10.1016/j.jallcom.2023.169712http://dx.doi.org/10.1016/j.jallcom.2023.169712
PHAM A T T, HOANG D V, NGUYEN T H, et al. Hydrogen enhancing Ga doping efficiency and electron mobility in high-performance transparent conducting Ga-doped ZnO films[J]. Journal of Alloys and Compounds, 2021, 860: 158518. doi: 10.1016/j.jallcom.2020.158518http://dx.doi.org/10.1016/j.jallcom.2020.158518
CHINNASMY M, BALASUBRAMANIAN K. Investigation on laser induced fano resonance of hydrothermally synthesized Ag doped ZnO hierarchical nanoporous structure and its UV photodetector properties[J]. Optical Materials, 2022, 133: 112873. doi: 10.1016/j.optmat.2022.112873http://dx.doi.org/10.1016/j.optmat.2022.112873
ATIQ S, ANSAR M T, HASSAN A, et al. Interlayer effect on photoluminescence enhancement and band gap modulation in Ga-doped ZnO thin films[J]. Superlattices and Microstructures, 2020, 144: 106576. doi: 10.1016/j.spmi.2020.106576http://dx.doi.org/10.1016/j.spmi.2020.106576
ALI H E, GANESH V, HARRTHA L, et al. Kramers-Kronig analysis of the optical linearity and nonlinearity of nanostructured Ga-doped ZnO thin films[J]. Optics and Laser Technology, 2021, 135: 106691. doi: 10.1016/j.optlastec.2020.106691http://dx.doi.org/10.1016/j.optlastec.2020.106691
GHAFRY S S AAL, AL-ABRI M Z, FARSI B A, et al. Ga-doped ZnO nanorods: The photocatalytic performance of methylene blue under solar irradiation[J]. Optical Materials, 2022, 126: 11213. doi: 10.1016/j.optmat.2022.112139http://dx.doi.org/10.1016/j.optmat.2022.112139
ZHANG M, ZHOU T, LI H, et al. UV-durable superhydrophobic ZnO/SiO2 nanorod arrays on an aluminum substrate using catalyst-free chemical vapor deposition and their corrosion performance[J]. Applied Surface Science, 2023, 623: 157085. doi: 10.1016/j.apsusc.2023.157085http://dx.doi.org/10.1016/j.apsusc.2023.157085
SHINDE S R, SHINDE V P. Liquefied petroleum gas sensing performance of solochemically synthesized ZnO nanorods: Role of precursors and fractal analysis[J]. Sensors and Actuators A: Physical, 2022, 345: 113800. doi: 10.1016/j.sna.2022.113800http://dx.doi.org/10.1016/j.sna.2022.113800
DENG H, FANG B, ZHANG Q, et al. Porosity engineering of ZnO nanorods for efficient sensing of n-butanol vapor[J]. Materials Letters, 2022, 328: 133169. doi: 10.1016/j.matlet.2022.133169http://dx.doi.org/10.1016/j.matlet.2022.133169
MICOVA J, REMES Z, ARTEMENKO A, et al. Plasma treatment of Ga-doped ZnO nanorods[J]. Physica Status Solidi A, 2022, 219(10): 2100663. doi: 10.1002/pssa.202100663http://dx.doi.org/10.1002/pssa.202100663
PHAN D T, CHUNG G S. Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties[J]. Sensors and Actuators B: Chemical, 2013, 187: 191-197. doi: 10.1016/j.snb.2012.10.080http://dx.doi.org/10.1016/j.snb.2012.10.080
SINGH P, SIMANJUNTAK F M, KUMAR A, et al. Resistive switching behavior of Ga doped ZnO-nanorods film conductive bridge random access memory[J]. Thin Solid Films, 2018, 660: 828-833. doi: 10.1016/j.tsf.2018.03.027http://dx.doi.org/10.1016/j.tsf.2018.03.027
KUMAR K D A, MELE P, MURAHARI P, et al. Enhancement of performance of Ga incorporated ZnO UV photodetectors prepared by simplified two step chemical solution process[J]. Sensors and Actuators: A. Physical, 2022, 333: 113217. doi: 10.1016/j.sna.2021.113217http://dx.doi.org/10.1016/j.sna.2021.113217
YANG M L, WENG X L, IQBAL M A, et al. Broadband photoresponse in plasmon-enhanced Ga-doped ZnO[J]. Materials Advances, 2023, 4(9): 2226-2233. doi: 10.1039/d3ma00017fhttp://dx.doi.org/10.1039/d3ma00017f
HSIAO C H, HUANG C S, YOUNG S J, et al. Field-Emission and Photoelectrical Characteristics of Ga-ZnO Nanorods Photodetector[J]. IEEE Transactions on Electron Devices, 2013, 60(6): 1905-1910. doi: 10.1109/ted.2013.2257790http://dx.doi.org/10.1109/ted.2013.2257790
YOUNG S J, CHIOU C L. Synthesis and optoelectronic properties of Ga-doped ZnO nanorods by hydrothermal method[J]. Microsystem Technologies, 2018, 24(11): 103-107. doi: 10.1007/s00542-016-3183-xhttp://dx.doi.org/10.1007/s00542-016-3183-x
YOUNG S J, CHIOU C L, LIU Y H, et al. Synthesis of Ga-Doped ZnO Nanorods by hydrothermal method and their application to ultraviolet photodetector[J]. Inventions, 2016, 1(1): 3. doi: 10.3390/inventions1010003http://dx.doi.org/10.3390/inventions1010003
YOUNG S J, LIU Y H, SHIBLEE M D N I, et al. Flexible ultraviolet photodetectors based on one-dimensional gallium-doped zinc oxide nanostructures[J]. ACS Applied Electronic Materials, 2020, 2(11): 3522-3529. doi: 10.1021/acsaelm.0c00556http://dx.doi.org/10.1021/acsaelm.0c00556
CHU Y L, YOUNG S J, CHU T T, et al. Improvement of the UV-sensing performance of ga-doped ZnO nanostructures via a wet chemical solution at room temperature[J]. ECS Journal of Solid State Science and Technology, 2021, 10(12): 127001. doi: 10.1149/2162-8777/ac3e43http://dx.doi.org/10.1149/2162-8777/ac3e43
WU H, YUAN Z L, WANG B Y, et al. Synthesis of single-crystalline ZnO nanoflowers for a superhigh-sensitivity ultraviolet photodetector application[J]. Optical Materials, 2021, 122: 111683. doi: 10.1016/j.optmat.2021.111683http://dx.doi.org/10.1016/j.optmat.2021.111683
LUO P, WANG F, QU J, et al. Self-driven WSe2/Bi2O2Se van der waals heterostructure photodetectors with high light On/Off ratio and fast response[J]. Advanced Functional Materials, 2021, 31(8): 2008351. doi: 10.1002/adfm.202008351http://dx.doi.org/10.1002/adfm.202008351
ZHENG H, JIANG Y, YANG S, et al. ZnO nanorods array as light absorption antenna for high-gain UV photodetectors[J]. Journal of Alloys and Compounds, 2020, 812: 152158. doi: 10.1016/j.jallcom.2019.152158http://dx.doi.org/10.1016/j.jallcom.2019.152158
袁兆林,胡宇杰,吕季辉,等.ZnO纳米线阵列/PVK异质结紫外光探测器特性[J]. 光学学报,2022,42(22): 2204001. doi: 10.3788/AOS202242.2204001http://dx.doi.org/10.3788/AOS202242.2204001
YUAN Z L, HU Y J, LV J H, et al. Characteristics of ZnO nanowire arrays/PVK heterojunction ultraviolet photodetector[J]. Acta Optica Sinica, 2022, 42(22): 2204001. (in Chinese). doi: 10.3788/AOS202242.2204001http://dx.doi.org/10.3788/AOS202242.2204001
XU N C, YUAN Z L, NIE F J, et al. Hydrothermal growth and ultraviolet sensing performance of well-aligned Ga-doped ZnO nanowire arrays[J]. Optical Materials, 2022, 133: 112995. doi: 10.1016/j.optmat.2022.112995http://dx.doi.org/10.1016/j.optmat.2022.112995
KUMAR C, KUSHWAHA B K, KUMAR A, et al. Fibrous Al-Doped ZnO thin film ultraviolet photodetectors with improved responsivity and speed[J]. IEEE Photonics Technology Letters, 2020, 32(6): 337-340. doi: 10.1109/lpt.2020.2974780http://dx.doi.org/10.1109/lpt.2020.2974780
JENISH S L, VALANARASU S, PRAKASH B, et al. Improved optical and electrical properties of Fe doped ZnO nanostructures facilely deposited by low-cost SILAR method for photosensor applications[J]. Surfaces and Interfaces, 2022, 31: 102071. doi: 10.1016/j.surfin.2022.102071http://dx.doi.org/10.1016/j.surfin.2022.102071
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构