浏览全部资源
扫码关注微信
1.华中科技大学 机械科学与工程学院,湖北 武汉430074
2.上海航天控制技术研究所,上海 201108
3.湖北工业大学 机械工程学院,湖北 武汉 430068
[ "臧艺凯(1992-),男,河南平顶山人,博士生,中级工程师,2015年于合肥工业大学获得学士学位,2018年于华中科技大学获得硕士学位,现为华中科技大学机械科学与工程学院博士生,主要从事机器人抛光工艺与装备方面的研究。E-mail: zangyk@hust.edu.cn" ]
[ "许剑锋(1979-),男,湖南邵阳人,博士,教授,2001年于新加坡国立大学获得硕士学位,2008年于美国加州学圣地亚哥分校获得博士学位,主要从事超精密与智能制造方面的研究。E-mail: jfxu@hust.edu.cn" ]
纸质出版日期:2024-08-10,
收稿日期:2024-06-04,
修回日期:2024-06-26,
移动端阅览
臧艺凯,朱蓓蓓,秦琳等.机器人抛光M-ZnS去除函数建模与工艺参数优化[J].光学精密工程,2024,32(15):2387-2400.
ZANG Yikai,ZHU Beibei,QIN Lin,et al.Modeling of removal function and optimization of process parameters for robotic polishing M-ZnS[J].Optics and Precision Engineering,2024,32(15):2387-2400.
臧艺凯,朱蓓蓓,秦琳等.机器人抛光M-ZnS去除函数建模与工艺参数优化[J].光学精密工程,2024,32(15):2387-2400. DOI: 10.37188/OPE.20243215.2387.
ZANG Yikai,ZHU Beibei,QIN Lin,et al.Modeling of removal function and optimization of process parameters for robotic polishing M-ZnS[J].Optics and Precision Engineering,2024,32(15):2387-2400. DOI: 10.37188/OPE.20243215.2387.
为研究M-ZnS在机器人抛光过程中的材料去除模型和优化参数组合,探究M-ZnS光学元件的高精度、低成本、批量化制造方案,采用有限元法和数值仿真法,对M-ZnS的机器人抛光材料去除函数模型进行修正。基于有限元法建立了抛光盘的压力分布模型,采用曲线拟合方法得到了压力分布函数。仿真模型和实验数据对比表明,去除函数模型与实验数据中心相对偏差小于8%,证实了修正去除函数模型的有效性。然后,对抛光关键工艺参数进行优化,通过单因素实验法,获得了机器人抛光M-ZnS的优化工艺参数组合:对于10 mm的沥青盘,推荐压力0.12~0.18 MPa,推荐的转速比范围200/
-
10~200/
-
50
rpm。最后,采用修正的去除函数模型和优化工艺参数对100 mm口径的M-ZnS平面光学元件进行抛光,并对抛光前后的表面粗糙度和面形精度进行测量和对比。实验结果表明,经过单轮80.39 min抛光,表面质量明显提高,元件淡黄色逐渐褪去,表现为透明材料,面形PV从0.668 μm降至0.229 μm,收敛率为65%,表面粗糙度
S
a
从7.911 nm降低至2.472 nm,收敛率为68%。机器人抛光技术可作为M-ZnS光学元件高效高质量加工的重要手段。
To study and optimize the material removal model for robotic polishing of M-ZnS and enhance the precision and cost-effectiveness of manufacturing M-ZnS optical components
the material removal model is refined using the finite element method and numerical simulation. A pressure field distribution model for a 10 mm asphalt polishing disc is developed
and the pressure distribution function is determined through curve fitting. The accuracy of the adjusted removal function model is verified with a less than 8% deviation when comparing simulation and experimental data. The polishing process parameters are optimized using a one-factor experimental method
suggesting a pressure range of 0.12 to 0.18 MPa and spindle speed ratios of 200/-10 to 200/-50 rpm for 10 mm discs. These optimizations were applied to polish 100mm M-ZnS planar optical elements. Post-polishing
the surface quality significantly improved within 80.39 minutes; the M-ZnS transitioned from light yellow to transparent
face shape PV decreased from 0.668 μm to 0.229 μm
with a 65% improvement
and surface roughness
S
a
went from 7.911 nm to 2.472 nm
with a 68% enh
ancement. Thus
robotic polishing proves vital for efficient
high-quality finishing of M-ZnS optical components.
机器人抛光M-ZnS去除函数工艺优化面形精度表面粗糙度
robotic polishingM-ZnSremoval functionprocess optimizationface shape accuracysurface roughness
王敦青, 焦秀玲, 陈代荣. 硫化锌性质、用途及制备方法概述[J]. 山东化工, 2003, 32(2):12-15.
WANG D Q, JIAO X L, CHEN D R. Brief introduction on properties, synthesis and applications of zinc sulfide[J]. Shandong Chemical Industry, 2003, 32(2):12-15.(in Chinese)
罗贞礼. 红外光学材料硫化锌概览[J]. 新材料产业, 2012(8): 41-44.
LUO ZH L. Overview of infrared optical material zinc sulfide[J]. Advanced Materials Industry, 2012(8): 41-44.(in Chinese)
李跃龙, 黎建明, 苏小平, 等. 红外窗口和整流罩材料研究现状与发展趋势[J]. 人工晶体学报, 2007, 36(4): 877-884.
LI Y L, LI J M, SU X P, et al. Research trends and current status in infrared window and dome materials[J]. Journal of Synthetic Crystals, 2007, 36(4): 877-884.(in Chinese)
刘珂, 李丽娟. 空空导弹与红外导引系统发展评述[J]. 激光与红外, 2016, 46(1): 5-10. doi: 10.3969/j.issn.1001-5078.2016.01.001http://dx.doi.org/10.3969/j.issn.1001-5078.2016.01.001
LIU K, LI L J. Development analysis of air to air missile and infrared guidance[J]. Laser & Infrared, 2016, 46(1): 5-10.(in Chinese). doi: 10.3969/j.issn.1001-5078.2016.01.001http://dx.doi.org/10.3969/j.issn.1001-5078.2016.01.001
刘蒙, 张伟科, 黄立, 等. 高超声速飞行器红外波段及窗口选择(特邀)[J]. 红外与激光工程, 2022, 51(4): 3788/IRLA20220161.
LIU M, ZHANG W K, HUANG L, et al. Infrared waveband and window selection for hypersonic vehicle(Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 3788/IRLA20220161.(in Chinese)
黄金库, 李军, 黄建东, 等. 不同粒径金刚石固结磨料抛光硫化锌晶体研究[J]. 机械制造与自动化, 2017, 46(2): 13-15.
HUANG J K, LI J, HUANG J D, et al. Research on diamond fixed polishing abrasive size for ZnS crystal[J]. Machine Building & Automation, 2017, 46(2): 13-15.(in Chinese)
张羽斐. 固结磨料研磨硫化锌亚表面损伤的评价与预测[D]. 南京: 南京航空航天大学, 2022.
ZHANG Y F. Evaluation and prediction of subsurface damage of zinc sulfide by consolidated abrasive grinding[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. (in Chinese)
陈琦. 硫化锌晶体加工工艺技术研究[D]. 长春: 长春理工大学, 2013. doi: 10.3969/j.issn.1672-9870.2013.03.036http://dx.doi.org/10.3969/j.issn.1672-9870.2013.03.036
CHEN Q. Study on processing technology of zinc sulfide crystal[D].Changchun: Changchun University of Science and Technology, 2013. (in Chinese). doi: 10.3969/j.issn.1672-9870.2013.03.036http://dx.doi.org/10.3969/j.issn.1672-9870.2013.03.036
JONES R A. Rapid optical fabrication with computer-controlled optical surfacing[J]. Optical Engineering, 1991, 30(12): 1962. doi: 10.1117/12.56019http://dx.doi.org/10.1117/12.56019
ZHANG J, WANG H. Generic model of time-variant tool influence function and dwell-time algorithm for deterministic polishing[J]. International Journal of Mechanical Sciences, 2021, 211: 106795. doi: 10.1016/j.ijmecsci.2021.106795http://dx.doi.org/10.1016/j.ijmecsci.2021.106795
WALKER D D, FREEMAN R, MCCAVANA G, et al. Zeeko/UCL process for polishing large lenses and prisms[C]//SPIE Proceedings", "Large Lenses and Prisms. London, United Kingdom. SPIE, 2002, 4411:106-111. doi: 10.1117/12.454877http://dx.doi.org/10.1117/12.454877
SCHINDLER A, HÄNSEL T, FROST F, et al. Ion beam finishing technology for high precision optics production[C]//Optical Fabrication and Testing. Tucson, Arizona. Washington, D.C.: OSA, 2002: OTuB5. doi: 10.1364/oft.2002.otub5http://dx.doi.org/10.1364/oft.2002.otub5
SHOREY A B, KORDONSKI W, TRICARD M. Magnetorheological finishing and subaperture stitching interferometry of large and lightweight optics[C]. SPIE Proceedings, Optical Fabrication, Metrology, and Material Advancements for Telescopes. USA. SPIE, 2004, 5494: 81-90. doi: 10.1117/12.550997http://dx.doi.org/10.1117/12.550997
Ke X, Yu Y, Li K, et al. Review on robot-assisted polishing: Status and future trends[J]. Robotics and Computer-integrated manufacturing, 2023, 80: 102482. doi: 10.1016/j.rcim.2022.102482http://dx.doi.org/10.1016/j.rcim.2022.102482
FAN C, LU Y, WANG K J, et al. Surface removal characteristic of computer-controlled dual-rotor polishing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(7): 2189-2199. doi: 10.1007/s00170-020-05494-5http://dx.doi.org/10.1007/s00170-020-05494-5
ZHANG L, ZHAO Q Z, FAN C. Dwell time algorithm in deterministic polishing of a free-form surface based on the continuous tool influence function[J]. Applied Optics, 2021, 60(9): 2704-2715. doi: 10.1364/ao.418409http://dx.doi.org/10.1364/ao.418409
PRESTON F. The theory and design of plate glass polishing machine[J]. J. Soc. Glass. Tech., 1927. 11.
DONG Z C, CHENG H B, TAM H Y. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate[J]. Applied Optics, 2014, 53(11): 2455. doi: 10.1364/ao.53.002455http://dx.doi.org/10.1364/ao.53.002455
LU A G, JIN T, GUO Z F, et al. Characterization of the tool influence function in a dual-axis wheel polishing process to achieve high material removal rates[J]. Precision Engineering, 2018, 52: 276-290. doi: 10.1016/j.precisioneng.2018.01.003http://dx.doi.org/10.1016/j.precisioneng.2018.01.003
ZHAO J B, WANG S, YIN H, et al. Investigation of influence function model and polished surface characteristics during belt polishing polycrystalline aluminate magnesium spinel (PAMS) ceramics[J]. Journal of Materials Processing Technology, 2023, 320: 118129. doi: 10.1016/j.jmatprotec.2023.118129http://dx.doi.org/10.1016/j.jmatprotec.2023.118129
HUANG X P, WANG Z Z, LI L C, et al. Research on the modification of the tool influence function for robotic bonnet polishing with stiffness modeling[J]. Robotics and Computer-Integrated Manufacturing, 2024, 86: 102674. doi: 10.1016/j.rcim.2023.102674http://dx.doi.org/10.1016/j.rcim.2023.102674
DEGROOTE-NELSON J, DRUCKER J A, HAEFNER A A, et al. Varying electro-kinetic interactions to achieve predictable removal rates and smooth surfaces on ZnS[C]. SPIE Proceedings, Optical Manufacturing and Testing VIII. San Diego, CA. SPIE, 2009, 7426: 82-91. doi: 10.1117/12.825384http://dx.doi.org/10.1117/12.825384
SALZMAN S, ROMANOFSKY H J, GIANNECHINI L J, et al. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids[J]. Applied Optics, 2016, 55(6): 1481. doi: 10.1364/ao.55.001481http://dx.doi.org/10.1364/ao.55.001481
席燕飞. 硫化锌光学元件射频离子束刻蚀技术研究[D]. 西安: 西安工业大学, 2019.
XI Y F. Study on RF ion beam etching technology of zinc sulfide optical elements[D].Xi’an: Xi’an Technological University, 2019. (in Chinese)
陈琦, 付秀华, 贾宗合, 等. 硫化锌晶体加工工艺技术研究[J]. 长春理工大学学报(自然科学版), 2013, 36(3): 120-123, 119.
CHEN Q, FU X H, JIA Z H, et al. Research on processing technology of ZnS crystal[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2013, 36(3): 120-123, 119.(in Chinese)
饶志敏. 轮式工具抛光硫化锌非球面关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
RAO ZH M. Research on key technology of polishing zinc sulfide aspheric surface with wheeled tools[D].Harbin: Harbin Institute of Technology, 2017. (in Chinese)
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构