摘要:长波红外差分干涉仪在低温工况下会因光学元件受到非均匀应力作用产生干涉条纹的畸变,从而降低干涉仪系统性能。本文为解决低温工况干涉条纹弯曲畸变问题,基于长波红外差分干涉仪光机系统进行了干涉条纹畸变影响因素分析,结合光-机-热耦合分析方法,对干涉仪系统低温工作状态进行仿真。随后设计了针对影响条纹畸变的关键元件——光栅元件的低温微应力动态稳定支撑安装结构,结构优化后的光栅表面面形均方根(Root Mean Square, RMS)值为3.89×10-2 nm,面形峰谷值(Peak to Valley, PV)值为2.21×10-1 nm,分别较优化前初始系统的分析结果减小了5个数量级,系统仿真干涉条纹畸变小于1个探测器像元。全系统低温验证试验表明,优化结构可有效抑制干涉条纹畸变,畸变量小于2个探测器像元,试验与仿真计算结果一致性较好,验证了优化分析方法的有效性。该优化方案对提升反射式光学系统结构低温稳定性,提高系统工作能力有较大意义和价值。
摘要:为了实现超冗余机械臂动力学模型的精确辨识,提出了一种基于迭代优化和神经网络补偿的半参数动力学模型辨识方法。首先,介绍了超冗余机械臂的动力学模型和最小参数集,建立了关节非线性摩擦模型,使用遗传算法优化回归矩阵条件数生成激励轨迹。然后建立了机械臂动力学模型物理可行性约束,基于迭代优化方法设计了两层循环网络对超冗余机械臂的惯性参数和关节摩擦模型进行辨识。最后,利用数据集训练BP神经网络,得到超冗余机械臂半参数动力学模型,并与多种算法进行了比较分析。实验结果表明:相较于传统的最小二乘算法和加权最小二乘算法,通过使用本文提出的辨识算法,关节辨识力矩残差均方根(Root Mean Square, RMS)之和分别提高了32.81%和23.76%,半参数动力学模型相比于全参数动力学模型力矩残差均方根之和提高了23.56%,辨识结果验证了辨识方法的有效性和优越性。