摘要:为了实现电致发光(Electroluminescent,EL)条件下太阳能电池的高精度裂纹和碎片缺陷检测,将多尺度YOLOv5(You Only Look Once version 5)模型用于真实工况下的太阳能电池缺陷检测。首先,提出一种融合可变形卷积(Deformable Convolutional Networks Version 2,DCNv2)和坐标注意力(Coordinate Attention,CA)的改进特征提取网络,拓宽小目标缺陷的感受野,有效增强小尺度缺陷特征的提取。其次,提出一种名为CA-PANet的改进路径聚合网络(Path Aggregation Network,PANet),将CA与跨层级联整合在路径增强结构中,实现浅层特征的复用,使深层特征和浅层特征结合,增强不同尺度缺陷的特征融合,提高缺陷的特征表达能力,提升缺陷检测框的准确度。轻量级CA的计算成本低,保证了模型的实时性。实验结果表明,融合DCNv2与CA注意力的YOLOv5模型平均精度均值(Mean Average Precision, mAP)值可达95.4%,较YOLOv5模型提高3%,较YOLOX模型提高1.4%。每秒帧数(Frames Per Second, FPS)可达51,满足工业实时性需求。对比其它算法,改进YOLOv5模型能精确检测到太阳能电池的微裂纹和碎片缺陷,能满足光伏电站真实工况下的实时高精度缺陷检测需求。